
P R O C D I N G S

RICISSYMPOSIUMl-
•_ _ _

(_ASA-CR-18799_) RICIS SOFTWARE ENGINEERING

90 SYMPOSIUM: AFROSPACE APPLICATIONS AND

RESEARCH DIRCZCTIONS PROCEEOINGS APPENOICES

(Houston Univ.) 136 p CSCL 098
G3/bI

N91-22728

--THRU--

N91-22730

Unct_s

0000363

Aerospace Applications &
Research Directions

November 7 & 8, 1990

RESEARCHINSTITUTEFORCOMPUTINGANDINFORMATIONSYSTEMS

Co-Sponsored by

University of Houston-Clear Lake
NASA�Johnson Space Center

I , 41

Session 1

Lessons Learned in Software

Engineering
Chair: Gary Raines, Manager, Avionics Systems

Development Office, NASA/JSC

Report from NASA Ada User's
Group

John R. Cobarruvias

Flight Data Systems Division, NASA/JSC

ISUlJECT

Joh.o_s._, c._,., 3rd Annual

Flight Data NASA Ada Users Symposium
Systems Division

EWJohn Cobarruvias

DATE

November 7, 1990
r _mlm ii I

SYMPOSIUM STATUS

John R. Cobarrulvas, Chairman

Flight Data Systems Division
NASMJSC

9 _ : J.._,.,,_c.,... 3rd Annual

_l_t Data NASA Ada Users SymposiumSystem# Division

_ . [gK,'JohnCobarruviu
OATII

AGENDA

• History

• Goals

• Evaluation

• Detailed Symposium Agenda & Status

Johas_ SCM_IC4mtw

Flight Dsts •
Systems Division

suB,J|_"

3rd Annual

NASA Ada Users Symposium

[_'_K/John Cobsrruviu

[No,ember_,199o[4

SYMPOSIUM HISTORY

• Sin.ned in 1988

•GSFC Spomored

• SEL _rorkshop

• .ISC's P_u'ficipation resulted in sponsoring 1990 at ISC

• Supported by MITRE and UH-CL

i W e-.mt

Flll_ht Data
Systems Division

IMw' N 3rd AnnualASA Ada Users Symposium

[_K/Jolm Cobmrruviu

DATE _ PAO•

November 7, 1990 I 5

GOALS OF SYMPOSIUM

• Recognize achievements and current projects at the various NASA centers

• Provide a forum to exchange ideas

• Provide a forum" to share experience using Ada

• Encourage communications within the NASA Aria community

jm _ ¢,mu_

Fll_lht Data
Syst,ms Division

suIw|cY

3rd Annual

NASA Ada Users Symposium

ttttm

EK/John Cobarruvias

otrl P_

November 7, 1990 6

EVALUATION

• Achieved our goals

• 350 registered participants

• -450 total attendance

• ALl centers represented

• Canadians

•Various universities

• Received over 40 papers

• ExceUent technical support

+,

m/xs/x

Fll_t Data
Syltems Divhslon

NASA Ada Users Symposium

November 7, 1990 [_ I

EVALUATION (cont)

• Overall comments have been positive

- Moving the Symposium provides different perspective

- Allows other centers to participate

- Excellent center status reports

- Chairman did an excellent job

(should be a basis for a promotion)

m/xs/x
+ohnm, n Slxme Clnl_r

Fll_t Data
Systems Divbion

SUBJ|C1'

3rd Annual

NASA Ada Users Symposium

EK/John Cobarruvtas

0.1,111 PAOU

November 7, 1990 8

EVALUATION (cont)

• MITRE

. Excellent technical support

- Understood need for a technical focus

- Paper selection and evaluation

- Overall session arrangement

• UH-CL

- Excellent logisific support

- Overall arrangements

- IN wkh MITRE

__'i _ NASA 3rdAnnuaJSy.teFllmlt_jtDDva_aion Ada Users Symposium

DETAILED SYMPOSIUM AGENDA & STATUS

• 5 Sessions/5 NASA sites, 13 papers

• NASA site status

• Object-oriented methods and simulation

• CM

• Distributed systems

• Reusability

• AI

3rd Annual

NASA Ada Users Symposium

EK/John Cobm'ruvi_

DAm

November 7, 1990

DETAILED SYMPOSIUM AGENDA & STATUS (cont)

• Key speakers

• Ralph Crafts (Ada Strategies)

. Jack C. Heberlig/MI'IXE

- Excellent closing remarks by the chairman

• Reception

_ SU_IICT

/_Jr_tt_\ J------ I 3rd Annual

(/-__ c__t.a,.. [NASA Ada Users Symposium
STiti_it I II,1LT If4 v_IlJ

NASA SITE STATUS

• Ada alive and well (could be better)

• JSC, GSFC, LaRC, LeRC, IPL

• Significant Ada Development

• No longer prototyping and research

• Scheduled delivery of Space Certified Ada S/W

John_n _ Contw

Flight Data
Systems Division

IUIJIIT

3rd Annual

NASA Ada Users Symposium

• i

EK/John Cobarruvias

O&TI PAOI'

November 7, 1990 12
mm •

JSC

• SSE (Rational Initiative)

• Major Ada Initiatives

• DMS

.ITVE

• JIB

• MSC

• TSC

i

m

3rd Annual

NASA Ada Users Symposium i o,_, . L,,o.
j. November 7,1990

GSFC

• Tremendous increase

• 1985 5 Staff years

• 1990 200 S.Y.

• Flight Telerobotic Servicer

• TDRSS

• EUVE Co-processor Flight Software

• HST

• Continued support of SEL

Jotmma Slmm e_ntw

_ FlllhtData
systems Division

1 r

8UIdlICT

3rd Annual
NASA Ada Users Symposium

ttttm

EK/Jolm Cobm'ruviu

DATIi PA@Ii

November 7, 1990 14

LaRC

• Currently 1 Branch using Ada

• 11 Projects

• Other Branches using Ada for prototypes

•Establisheda Software Engineet_g and Ada Lab (SEAL)

•Sponsored 15 classesin Iyear

• Contractor supported

ii

_L

Jotu_m SmM ¢,_lw

Flight Data
Systems Dlvl.lon

$UIMEC"/' 3rd Annual

NASA Ada Users Symposium [o'-i'_'-'--m'[K'_--

._____[No,tuber7,1.o

LeRC

• Significant increase

• SSFP Projects (WP4)

• Ada training a key factor

• Required additional training

dol_._mnSpacm_tor

Flight Data
Systems Division

|

IUIM|b"T HAMI

EK/Joha Cobarruvias
3rd Annual

NASA Ada Users Symposium o,_ p,G_
November 7, I990 16

J

JPL

• Established Ada Development Lab

• Few systems using Ada

• 1 Flight System CRAF/CASSINI

• But...interest is growing

• Most problems directly related to cost of training

• Comprehensive training program with NASA funding is required

,ka_em _ cw.w

FlightData
Systems Division

3rd Annual
NASA Ada Users Symposium

NASA ISSUES

• 3 sites with software engineering and Ada labs

GSFC SEL

- IPL ADL

LaRC SEAL

• Training is currently site specific, site funded

• Requires an overall NASA initiative

• Documented in Transition to Ada Plan

• Excellent ideas, plans

• Looking to HQ to implement the plan

• All sites supportive and moving in the right direction

Flight Oat.Sy.tems Division

$1Jiid|cr

3rd Annual
NASA Ada Users Symposium

LUNCHEON SPEAKER

• Ralph Cra_

• Editor, Ada Strategies
v,

• Cometrmed the NASA transition issue

• Emphasize training

• Highlighted Ada success stories

Stealth Bomber

• Management support of Ada

,i m l

EK/JolmCobsrruv_m

DATII PAOli

November 7, 1990 18

Jo_mmn _ C4mtw

FlightData
Systems Division

SUBJECT

3rd Annual

NASA Ada Users Symposium

EK/John Cobm'ruviss

0ATI P&G|

November 7, 1990 19

CONCLUSIONS

• Achieved our goals

• Well receivedby thecommunity

• 1991 Symposium, LaRC

•PersonalperceptionofAda

N91-22729

Software: Where We Are & What

is Required in the Future
Jerry Cohen

Boeing Aerospace and E/ectronics

High

Technology
Center

|mE

Flight Critical Software: Current Status and Future Direction

|1

Gerald C. Cohen

Boeing Aerospace & Electronics

High Technology Center

High

Technology

Center I II

The Programmers

ENVIRONMENT

High

Technology
Center

J'Of/ArO

• High integrity considerations

• Hard real-timeconstraints

• Implications of a still evolving systems architecture

• Need to meet delivery schedules with high productivity

• Evolving requirements &specifications

Octa_r]t. tgSOi:_k4i _*TCG¢CO03

\

High
Technology
Center

RESULTS

High

Technology
Center

CASE 1

Triplex Digital Flight Control System

• Not synchronized

• Analog backup

• Each computer samples sensors
,ndependently, uses averages of
good channels

High
Technology
Center

CASE 1

A'_'f/AfO

Fliqht

e

e

e

Asynchronous operation, skew, and sensor noise led
each channel to declare others failed

Analog backup not selected

No hardware failures had occurred

CASE 1
High

Technology
Center

J'OAr/AFO

Analysis

• Failure traced to roll axis software switch

• Sensor noise and a synchronous operation caused
one channel to take a different path through the
control lows

• Fix was to vote software switch

• Extensive simulation and testing performed

Next flight - same problem

- Although switch value was voted+ unvoted value.
was used

High
Technology
Center

J]

CASE 2

m'_fJAf4_'

• Single failure in redundant uplink hardware

• Software detected this- continued operation

• Would not allow landing gear to be deployed

• Aircraft landed with wheels retracted -
sustained little damage

• Traced to timing change in the software that
had survived extenswe testing

High

Technology
Center

Saab Grippen Flight Test Program

VIT

OOflA/O

• Unstable aircraft

• Triplex DFCS with analog backup

• Yaw oscillations observed on several flights

• Final flight had uncontrollable pitch oscillations

• Crashed on landing

• Traced to control laws

High

Technology

Center

BOI/NO

B-1 B Defensive Avionics

• fundamental flaw in system architecture

NOv4lm41_r 5, tgJ_02:47 PM HTC_t 1

High
Technology
Center

8'£1'8"JA_'0

Present Day Problems

High

TeehnoloTy
Center

I

BOKJNO

• Requirements are incomplete

• Specifications are incomplete or inconsistent

• No way of proving specification satisfies requirements

@ Implementation performed on host machine

- NO relationship to target machine

- Oifferent operating systems on both machines

- No way to guarantee real time operation

• Enormous cost overruns

• Late delivery

IVove_b4_ S, 1Mla tO OS aAe: MTt_Ot 2A

(i '

High

Technology
Center

Bof#_ wo

• Software delivered does not behave as intended

• Validation and verification

- practically impossible for large programs
- state space explosion

• Testing procedures are ad-hoc

• No generalarchitecture

• Different languages for different phases of life cycle

• High maintenance costs

No_lmll_ 2.1 _JIO I 1:12 JJd N TC..,_ I]I

High

Technology
Center

BOfl_lWO

It appears that 60-70% of all

software problems are related to

requirements/specifications not

being complete or inconsistent

High
Technology
Center_

O00"J_O

Present Day Tools

High

Technology
Center

OOfl_O

Case Tools

• Bubble charts (Yourdon, etc)

• Data flow

• Control flow

• Sookeeping

High

Technology
Center_

They do not:

, perform reliability analysis

, perform architecture design

e perform component design

• perform & produce trade studies

• perform testing

• produce test procedures

• perform configuration management

4P4_,ArJAifo

OctoMq 31.1NO 10:30 AM _TC_t 5

High

Technology
Center

ooJrJ_vo

eThey do:

• Support functional decomposition

• Interfaces allocated to components

• Functionality derived from constraints and performance

Payoff:

• Interfaces defined between functions

• Behavior is represented by functions

• Constraints influence behavior

High

Technology

Center

BOf/A¢O

Overall Benefits

• Provides integrated requirements database

• Supports impact analysis

• ldentifiesand reduces risk

• It supposedly adds.s.tru.cture to the
requirements/speaficatlon phase

NOVqHBINr 2, t_ 11 : 14 JJM 14T_1 _

High
Technology

Center I II

80flA¢O

Analysis Tools
(reverse engineering)

PA

NO

NO

¢0

A_LJll©at £cm s

gca_ ot e_o _11_I n_Igloamf cooq_
;_mgw_o: A,DA

ORIGINAL PAGE IS

OF POOR QUALITY

High

Technology

Center
I II Ill II

m,OdrJAfO

Calling Tree

• Reuse of modules

(in general doesn't occur in hardware design
fora particular function)

• Shows complexity

• Real time analysis is a problem

P.pp/./.car,Lon :

• ,_,_ _. _r_

J ¢ u £(.,* _6.T ecTIoe_.J
Q

High

Technology

Center

BOfINO

Automatic Code Generators

• Caede

• Matrix

Ocl_1_r |1, 11,1_ 12:121DM HTC022

REDUNDANT DATA BUS SOFTWARE

Plrucl_vlv_ten o nelvlrk_|

PH

10

_e

kit.P!

kta'¢e.Pf

I_dVe.

(,
I_..PI=AU

CONTROL FLOW

DATA FLOW
PROCEDURE PACKAGE

71011 U3074-12

REDUNDANT DATA BUS SOFTWARE

7101g M3G7,

ORIG;NAL PAGE IS

oF Poor QIJ/U.n'y

_m

"b
c.

i !Ii""

I lJ,.
,11I.-

rail

V

I

JLI
|

i

!

S
iii

i I

T

ORIGINAL PAGE IS

OF POOR QUALITY

i
|, ii J

High
Technology
Center

OOJlrl_O

Future

High

Technology
Center •..

I]I_

OOf/A¢O

• Need systems engineering approach

t

• Systems will be more integrated in the
future

• Need better analysis between hardware &

software

Frame 1

cP
ms ms 'ms ms ms

lOP

Network I

Network 2

Frame 2

cP

lOP

9 ms

Network 1

Network 2

Frame 3

cP

lOP

ms

Network 1

Network 2

100Hz
FDIR

50 Hz
25Hz

_'nk FaJluro

High

Technology
Center

I

BOdF/HO

, Need portability

• Standard interfaces

• Graphics

• Data bases

S. 1NO 10:1_ AM MTCO2I

High

Technology
Center

I I l II

J'OdP/NO

• Common software architectures

• Exist for compilers & operating systems

• Does not exist for application software

(hardware years ahead in this regard)

High
Technoloff_'
Center

4Fa741r14Vd_

• Gradual introduction of formal representation
for validation & verification

• Formal representation of requirements and specification

NoNm_lmt S. 111110lO:16_kl HTC_7

High

Technology
Center

J'of/_u'o

• English Requirements

Spiral Mode

a) If unstable, the spiral mode time to double amplitude shall

be no less than 20 seconds at speed from 1.2 VS1 to VFC/MFC

(Conventional control)

b) The airplane characteristics shall not exhibit coupled roll-

spiral mode in response to the pilot roll commands

c) Minimum acceptable: the spiral mode time to double

amplitude shall be greater than 4 seconds

NO_lmll_ I. 111tl04:1_1_M NTC:I_I I

High
TeehnolofDv
Center

B_ArJAFd_

Formal statement of "Spiral Mode" requirements:

a) if Aircraft.State • Unstable then

if Aircraft.State.Mode • "Spiral" and Aircraft.State.Time • t and

Aircraft.State.Amplitude • a and

1.2 * V51 S<5 • aircraft.state.speed S<S • VFC/MFC then

exists t 5<S • tl 5<$ • t + 20 : Aircraft.State. Amplitude • 2 "a

b) module PilotCommand

operation RollControl

postcondition: Aircraft.State.Mode -- = "CoupledRollSpiral"

end RollControl

c) forall s in Aircraft.Stata :

if s.Mode • "Spiral" and s.Time • t and s.Amplitude • a

forallt$<$• tl S<S- t+4 :

if s.Time ,, tl then s.Amplitude S<$ 2 * a

Nov4_mlll_r $, I4JHI_ 4:MPtb4 N TCI_I_

High

TechnolorY
Center |ili]

Benefits

• Can prove that specifications satisfy requirements

Can prove various properties of specifications

• traceability

• generate test cases

• Can execute specifications (i.e. OBJ)

• reasoning about changes

NS'f/AFO

. High

Technology
Center

J'OlIAFO

Need formal verification of software
(10-20 years)

• Actual software

• Formal proof of automatic code generator

High

Technology
Center

m'ofJNo

• Need high order language

• OBJ

• shorter programs

• no difference between spedfication

and programming language

• reuseable code

• decisions tend to be localized

Nc_HmJImr S. HHml0:dIOAM HTC033

High

Technology
Center .

Detailed View of a Verification System
Designer

specs _ / program

SaYntaxof program
nguage

| n | n l| I | in i !

and specification
language

Lemmas

Hints
v

Inductive
m
assertions

Verification Semantics of
condition
generator program language

r

_ Verification, conditions

MKhanical Theorem Prover

proved unproved counter
example

Semantics of
ql

spedfi¢ation
language

O04r/AYO

_bm|. ItlO l:q 1_1_T¢044

High

Technology
Center

II I

OOf/NO

• Subset of Fortran

• Subset of Pascal

• Subset of Ada

• Subset of "C"

-e Gypsy

ImamS. lNil:Ml_l _*TI_I]

High
Technology
Center

I I

8'Of/NO

A Growing Fear

High

Technology
Center

Jof/No

"Red Paper"

Bill Totten

President of K.K. Ashisuto

"The Largest Distributor of Independent

Software Products in Japan".

31, %4MI6 t]:t2 I_t MTC03£

High
Technology
Center,

I

"1 believe that the United States is in danger of abandoning another

vital industry to Japan. This is the computer industry; both computer
hardware and computer software.

I see the same pattern of abandonment and surrender now beginning
in computers that has occurred before in such industries as

motorcycles, automobiles, consumer electronics, office equipment
and semiconductors."

High

Technology
Center

! I I

ODf/H_

"Japan's electronics industry is the worlds best and largest because it is

the most competitive. It i,scompetitive because it is based on.standards

rather than on I)roprietary products. Standards make it easy for new

competitors tO enter the industry, and make it easy for Customers to

switch from one competit, or's product to another. The competition

stimulates new ideas for products and new ways to manufacture them

more efficiently."

Ne,_:l. t,IHle tI:_IAM HTCON

High

Technology
Center

I I

"Japanese software products are starting to beat American
software products in Japan for the following reasons:

lw

Q

3.

.

5.

e

drOflAfO

They are comparable in functional capability to the best
American products.

They are of much higher quality than American software

3-to-1 productivity advantage over the United States in
software development

20:1 to 200:1 quality advantage

Japanese emphasize management and process; US tends to
emphasize technology (looking for the "silver bullet').

Japanese software managers stay technically up-to-date,
and strive to understand software development at a
detail(_d technical level; US managers appear more
financially oriented."

b¢ 5.19410 t0:42 AM _TC039

High

Technology
Center

OOn'lNO

"End Result:

• Quality figures are quoted for !apanese softwareof 8
defects per I mtlhon hnes of reieaseo sotwvare -mrs ts
recording all problems, not just customer- reported
defects

• IBM Japan produces software which hasan order_of
magnitude fewer defects than that proaucecl ny iBM US
andlBM France

• The low end of Japanese software productivity is at the
htgh end of US companies production"

Managing Real-Time Ada
Carol A. Mattax

Hughes Aircraft Corp., Radar Systems Group

MANAGING REAL-TIME Ada

(A COMMON-SENSE APPROACH)

RICIS '90

RADARIYfllUldll GROUP

901mffNARI!_m_N & Di_B.OI_IDIT

MANAGING REAL-TIME Ada I
I [I1FII]111I

Ada OFFERS THE ABILITY TO IMPROVE SOFTWARE PRODUCTS IN THE
"ILITIES":

• RELIABILITY

• MAINTAINABILITY

. PORTABILITY

• SUPPORTABILITY

• QUALITY

THIS PRESENTATION WILL FOCUS ON THE MANAGEMENT PROCESS
RATHER THAN THE TECHNICAL MERIT OF THE PRODUCTS

• PRODUCT IMPROVEMENT BY THE USE OF Ada IS ASSUMED INHERENT
IN CHOOSING AND USING THE LANGUAGE

MANAGING REAL-TIME Ada

• THE REAL-TIME SOFTWARE UNDER DISCUSSION IS EMBEDDED
OPERATING SYSTEMS FOR HUGHES MODULAR PROCESSORS,
AVIONICS COMPUTERS SUPPORTING MULTI-SENSOR DATA AND
SIGNAL PROCESSING

• DATA PROCESSING TARGETED TO INTEL i80960 32-BIT JIAWG
STANDARD

• HARD REAL-TIME CONSTRAINTS

PERFORMANCE REQUIREMENTS DEFINED AT HIGH LEVEL THEN
ALLOCATED DOWN AS TIMING "BUDGETS"

• OPERATING SYSTEM "BUDGE3" DEPENDS ON APPLICATION USAGE;
DIFFICULT TO ACCURATELY QUANTIFY

. EVEN WITH WELL-DEFINED TIMING CONSTRAINTS, IT'S NEVER FAST
ENOUGHI EVERY MICROSECOND SAVED REPRESENTS I:N:)TENTIAL
ADDED FUNCTIONALITY

MANAGING REAL-TIME Ada

; r

THE TRADITIONAL RESPONSE TO HARD REAL-TIME CONSTRAINTS,
ESPECIALLY IN AN EMBEDDED OPERATING SYSTEM, IS ASSEMBLY
LANGUAGE

THE HUGHES MODULAR PROCESSOR OPERATING SYSTEM IS
WRITTEN IN Ada

• FIRST GENERATION IN Ada DUE TO DoD MANDATE

• SUBSEQUENT GENERATIONS IN Ada DUE TO BENEFITS IN PROCESS
AND PRODUCT

TRANSITIONING FROM ASSEMBLY LANGUAGE TO Ada IS NOT EASY

• FIRST GENERATION USED "BRUTE FORCE" APPROACH

• IN SUBSEQUENT GENERATIONS, MANAGEMENT PROCESS
TAILORED TO LEVERAGE OFF Ada

!
CONSEQUENCES OF "BRUTE FORCE" |

APPROACH TO Ada

• COMPILER PERFORMANCE WAS MUCH WORSE THAN EXPECTED,
ESPECIALLY USING CERTAIN CONSTRUCTS

• REAL-TIME PERFORMANCE WAS SIGNIRCANTLY DEGRADED

• RUN-TIME SYSTEM FUNCTIONALITY AND PERFORMANCE WERE
INSUFFICIENT FOR REAL-TIME DEMANDS

• LEARNING CURVE FOR Ads HAS TO BE FACTORED IN

• BAD FORTRAN CAN BE WRITTEN IN ANY LANGUAGE

SUBSTANTIAL OPTIMIZATION WAS REQUIRED TO ACHIEVE
PERFORMANCE GOALS

• . INmAL RELEASE WAS 3 TO 10 TIMES TOO SLOW

BRUTE FORCE APPROACH WORKS BUT IS PAINFUL AND INEFRClENT

TAILORING THE MANAGEMENT I
PROCESS FOR Ada.

REQUIREMENTS
III

ALLOCATING PERFORMANCE REQUIREMENTS TO DETAILED TIMING
BUDGETS IS A CRITICAL ACTIVITY IN SPECIFYING REQUIREMENTS FOR
REAL-TIME SYSTEMS

TO ALLOCATE TIMING REQUIREMENTS, THE PERFORMANCE OF
COMPILED CODE MUST BE KNOWN, BUT TYPICALLY ONLY AVERAGE
PERFORMANCE OVER A NARROW SET OF BENCHMARKS IS KNOWN,
IF THAT

COMPILER EVALUATION AND BENCHMARKING IS REQUIRED PRIOR TO
OR DURING THE REQUIREMENTS PHASE

• EVALUATION CRITERIA INCLUDE EFFICIENCY, CODE EXPANSION,
ROBUSTNESS, IDIOSYNCRAClES IN IMPLEMENTATION OF Ada, ETC.

• VARIETY OF BENCHMARKS ARE USED:

• STANDARD PIWG, ETC.

• BENCHMARKS REPRESENTATIVE OF THE REAL-TIME
APPLICATION AND/OR THE MOST SEVERE CONSTRAINTS

TAILORING THE MANAGEMENT I
PROCESS FOR Ada: I

DESI N

HUGHES

ONE OF THE BENEFITS OF Ada IS MOVING DEVELOPMENT ACTIVmES
FROM INTEGRATION TIME TO DESIGN TIME

• USE PACKAGE SPECS TO DEFINE CSC'S AND TO UNAMBIGUOUSLY
DEFINE INTERFACES

• TEST AT DESIGN TIME BY COMPILATION RATHER THAN AT
INTEGRATION TIME BY TESTING AND REWORK

. CONFIGURE PACKAGE SPECS EARLY

• FLOW DOWN TIMING BUDGETS AND IDENTIFY CRITICAL
COMPONENTS

• RAPID PROTOTYPING SELECTED CRITICAL AREAS PROVIDES
EARLY MEASURE OF WHETHER TIMING BUDGETS ARE
ACHIEVABLE AS WELL AS VALIDATION OF BENCHMARK RESULTS

• REWORK AND REALLOCATION OF TIMING IS THUS POSSIBLE
MUCH EARLIER IN THE DEVELOPMENT CYCLE

TAILORING THE MANAGEMENT J
PROCESS FOR Ada.
DESIGN (CON'I'D.)

SOFTWARE ENGINEERING PRACTICES SAY IF YOU SPEND MORE TIME
DESIGNING, INTEGRATION GOES FASTER, WITH LESS REWORK, AND THE
PRODUCT IS BE'I-rER.

ESPECIALLY IN REAL-TIME SYSTEMS, WHERE THERE IS A LEGITIMATE
FEAR THAT THE SYSTEM WILL FAIL TO MEET REAL-TIME CONSTRAINTS,
THERE'S A PUSH TO GET TO THE LAB AS SOON AS POSSIBLE TO SEE
HOW BAD PERFORMANCE IS.

TAILORING THE PROCESS TO SUPPORT Ada FORCES MORE TIME TO BE
SPENT IN DESIGN

• CORRESPONDING SUCCESS IN INTEGRATION HAS BEEN ACHIEVED

• THE FEAR IS STILL THERE. GETTING AN EARLY HANDLE ON TIMING AS
DESCRIBED ABOVE HELPS MITIGATE SOMEWHAT, BUT THE FEAR
NEEDS TO BE MANAGED AS WELL

TAILORING THE MANAGEMENT i
PROCESS FOR Ada: !

ODING

tUGttES

THE DISTINCTION BETWEEN DESIGN AND CODE IS BLURRED WITH Ada,
ESPECIALLY IF Ada CONSTRUCTS AND Ada AS PDL ARE USED TO
DESCRIBE THE DESIGN. NONETHELESS, THERE'S A CODING JOB TO DO.

FOR A TYPICAL REAL-TIME SYSTEM, WHERE EVERY INCREASE IN
PROCESSOR OR COMPILER PERFORMANCE REPRESENTS MORE
FUNCTIONALITY, THE NON-DETERMINISTIC FEATURES OF Ads ARE A
PROBLEM,

• WE STATICALLY ALLOCATE MEMORY, DO NOT USE RUN-TIME
ELABORATION OR RENDEZVOUS, ETC. IN THE OPERATING SYSTEM

. IN ADDITION, FOR A GIVEN TARGET AND COMPILER, CERTAIN Ada
CONTRUCTS MAY BE TOO SLOW FOR EFFICIENT REAL-TIME
PERFORMANCE. SUCH CONSTRUCTS ARE IDENTIFIED DURING THE
BENCHMARKING PROCESS

• ALL SUCH RESTRICTIONS ARE DOCUMENTED IN THE CODING STANDARD
OR GUIDELINE

TAILORING THE MANAGEMENT |
PROCESS: IINTEGRATION

PLAN IN TIME DURING THE INTEGRATION PHASE FOR OPTIMIZATION

• IT WON'T BE FAST ENOUGH!

DEVELOP TOOLS TO TIME AND BENCHMARK SYSTEM PERFORMANCE
PRIOR TO INTEGRATION

• FOLKLORE AS TO WHERE THE TIME GOES IS OFTEN WRONG

• SOMETIMES POOR PERFORMANCE IS DUE TO A CODING ERROR

• BENCHMARK AND DOCUMENT PERFORMANCE WITH EVERY SIGNIFICANT
REBUILD TO AVOID TIMING BUILD-UP AGAIN

AVOID THE TEMPTATION TO USE ASSEMBLY LANGUAGE EXCEPT WHEN
IT'S REALLY THE LAST RESORT

• CAN COVER UP ERRORS, POOR DESIGN, OR POOR IMPLEMENTATION
WHICH COULD HAVE BEEN CORRECTED USING Ada

TAILORING THE MANAGEMENT I
PROCESS FOR ADA: I

DOCUMENTATION

• DOCUMENTATION IS A SIGNIFICANT SOFTWARE DEVELOPMENT ACTIVITY
FOR DoD SYSTEMS

THE DOCUMENTATION PROCESS AND PRODUCT CAN BE SIGNIFICANTLY
IMPROVED BY LEVERAGING OFF Ada:

• IRS & IDD: USE Ada PACKAGE SPECS AUGMENTED BY COMMENTS

• USER'S MANUAL, AT LEAST FOR OPERATING SYSTEMS: START WITH
USER SPEC WITH COMMENTS AND AMPLIFY AS DEVELOPMENT
CONTINUES

• DESIGN DOCUMENTATION: USE PACKAGE SPECS AND Ada AS PDL;
SUPPLEMENT WITH DATA FLOWS, ETC.

• AS-BUILT DOCUMENTATION: REVERSE ENGINEER FROM THE CODE TO
ENSURE ACCURACY; SUPPLEMENT AS NEEDED

MANAGING REAL-TIME Ada i

• Ada AND REAL-TIME ARE NOT INCOMPATIBLE, BUT GREAT CARE MUS'I
BE TAKEN TO:

• UNDERSTAND THE COMPILER PERFORMANCE

• MANAGE THE DEVELOPMENT PROCESS TO LEVERAGE OFF Ada

. MANAGE THE FEAR OF NONPERFORMANCE TO HARD REAL-TIME
REQUIREMENTS

Session 2

Software Engineering Activities
at SEI

Chair: Clyde Chittister, Program Director of Software
Systems, Software Engineering Institute,
Carnegie Mellon University

Carr,_ Mdaa _

Software Engineering Institute

Software Systems Program

November 8, 1990

RIClS "90"

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

m

_ Ull_ UJW=Ity
Softwm'¢ Engineering InlUtute

SEI Mission

Provide leadership in advancing the
state-of-the-practice of software engineering
to improve the quality of systems that depend
on software.

Software Engineedng Inltltutt

Technology
Flow Paths

Purpose:

To facilitate a
higher quality
communication

Software Engineering Institute

Software Systems Program Objective

Assist the MCCR community in improving the way
software is developed for real-time distributed
systems

• integrate software and systems engineering

• increase the effective use of technology
- Ada
. design methods
- common architectures
- scheduling algorithms

• Reduce the risk of adopting new technology

m

Software Engineering Institute

Strategy

Identify and select key te'chnicai Issues to investigate.

Select application domains in which to work.

Establish relatlonshlpe with Influential customers and
vendors in these domains.

Evaluate and prototype potential solutions to selected
technical problems.

Conduct proof.of-concept experiments in selected
application domains.

Facilitate the introduction of these concepts into
practice.

C_egle Me_io. Un_.I_y

Software Engineering Institute

Software Systems Projects

Rate Monotonic Analysis for Real-Time Systems

Software for Heterogeneous Machines

User Interface - SERPENT

Real-Time Embedded Systems Testbed

Systems Fault Tolerance (proposed)

Real-Time Data Management (potential)

User Interface Development
Serpent UIMS

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

cm _ urw_y

Software Engineering Institute

Introduction

• Problems

• Objectives

• Approach

• Serpent Architecture

• Serpent Editor

• Outside Efforts

• Status

90-Setpe_-rNd- I

Cam_, _ UrMr_
Software Engineering Institute

User Interface (UI) Problems

, User interface accounts for large portion of life
cycle costs

• Impacts all aspects of the life cycle

- requirements
- development
- sustaining engineering

90-Seq_-re_-2

C_ _k_ Urwen_y

Software Engineering Institute

Life Cycle Problems

• Requirements

- evolutionary, not well specified
- written specifications inadequate
- customers may not know what is practical

• Design/implementation

- very labor intensive
- inadequate existing methods and tools

• After system completed

- frequent and complex changes required
- difficult to take advantage of new I/0 media

90-Ser/_ent-reed.3

CarnegieMellonUnivemily

Software Engineering Institute

Objectives

• Make user interfaces easier to specify

• Support incremental development of user
interfaces (prototypes)

• Provide for a "bridge" between prototype and
production versions of system

• Support insertion of new I/0 media during
sustaining engineering

90-,.q_.reed-4

Software Engineering Institute

Approach to Reducing UI Problems

• Provide single tool which supports incremental
specification and execution of interface

• Separate concern of user interface specification
and execution from rest of system concerns

• Apply non-procedural language and graphical
techniques to user interface specification

90-Seq_rrt.nm_.5

C_e_e Me_oeur*_n_y
Software Engineering Institute

Serpent UIMS

• Has specialized language for user Interface
specification

• Supports I/0 media Independent applications

• Supports both prototyping and production

• Supports multiple !/0 media for user interactions

• Supports ease of insertion of new I/0 media

c_ UMon Un_f
Software Engineering Institute

Serpent Architecture
Application

layer

90-Ser/_nt-reed. 7

CameQieMe_oaUnh..'=_ty

Software Engineering Institute

Slang, U! Specification Language

° Based on production model

- data driven
- allows multiple threads of control

* Provides multiple views of the same data

- implemented with constraint mechanism
- re-evaluates dependent values automatically

when independent values modified
- applies to application values, I/0 media display

values, and local variables

90-,Seq_-rNd-8

c_ Meaaeu_

Software Engineerin_l Institute

Prototyping

• Detailed knowledge of Serpent dialogue model is
not required

• Application not required

• Slang allows definition of local data

• Serpent automatically enforces constraints

• Reasonably sophisticated prototypes can be.
generated, e.g., visual programming

90.Serpent.rNd.9

CameCeMe4k_Univen_y
Softwsre Engineering Institute

Input/Output Media

• Serpent designed to simplify the integration of I/0
media

• Currently integrated

- digital mapping system
- Xll Athena widget set

• Integrations anticipated/in progress

- Motif
- Open Look

90.$emer_-med-l O

Cam_ _e_IonUnwers_y

Software Engineering Institute

Application

• Can be written in C or Ada

• Views Serpent as similar to database management
system

• Creates, deletes, or modifies data records

• Informed of creation, deletion, or modification of
data records by dialogue layer

90-Serpent.reed. I 1

CarnegieMellonUniv_/

Software Engineering Institute

Serpent Editor

• Layouts of user interface are best specified or
examined graphically

• Logic, dependencies, and calculations are best
specified textually

• Serpent Editor has two portions

- graphical part for examination and specification
of layout

- structure part for textual specification

Implemented using Serpent

90-Semem-rNd- 12

cm _ u_m_y
Software Engineering Institute

Outside Efforts-- ARMY TO&P

• FATDS/CECOM - on contract

. Port Serpent to ATCCS CHS

- Install Serpent at Center for Software
Engineering

- Technical support to Magnavox

• FAAD - preliminary negotiations underway

. Technical support to TRW

90-Sement-reed-13

c_o_#__ urMm,el
Software Engineering Instttut•

Outside Efforts-- Standardization Work

• IEEE P1201.3

• OSF

• Unix International

• UIMS Working Group

90-Sequin-flee 14

Call.gin Ma_ U_vwl_/

Software Engineering In#tltute

Outside Efforts -- Commercialization

• Dedicated Company

• Consortium.

• Multiple H/W and/or S/W vendors

90-Serpent.reed. 15

CarnegieMollonUnlverlMly

Software Engineering Institute

Status

• Serpent (with visual portion of editor) in alpha test

• Supported for Sun, VAX (Ultrix), DECStation, HP
(HPUX)

• Beta version of Serpent (including complete editor)
available 4QCYg0

_.Setper4oreed-16

Session 3

Software Reuse

Chair: Robert Angler,/BMCorp.

,w •

Session 3 10:15 - i1:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division

Owego, NY 13827
(607) 751-2169

net: OWEGO@IBM.COM

Unclassified

n _an aan_,

N _ amml _ mll

u aL_mmp _ •

Where Does Reuse Start?

Will Tracz

MD 0210
IBM System Integration Division

Owego, N.Y. 13827
OWEGO@IBMCOM or TRACZ_411_RASTANFORDEDU

Preface

The following is a transcript of the keynote address
for the Reuse in Practice Workshop sponsored by
IDA, SEI and SIGADA. The workshop was held in

Pittsburgh, PA at the SoRware Engineering Institute,
July I!-13th, 1989. The goal of this talk was to estab-

lish .some common vocabulary and to paint a broad
picture of the issues related to software reuse.

Overview

Software reuse is the type of thing some people swear

by. It is also the type of thing that some people swear
at. Software reuse is a religion, a religion that all of us
here today pretty much have accepted and embraccd.

"i'he goal of this talk is to question the foundation of
our faith - to test the depth of our convictions with

the hope of shedding new light on our intuitions. I
do not claim to have experienced divine intervention.
You don't need to take what I say as gospel truth. [
believe in what I say, but what you hear may be

something different. Again, let me encourage you to

disagree - to challenge the position 1 have taken on
the issues I will be presenting. Before I proceed
further, I need to qualify soRware reuse by providing a
definition.

Software reuse, to me, is the process of ren.,dng ..,oft-
ware that was designed to be reused. Software reuse is
distinct from software salvaging, that is reusing soft-

ware that was not designed to be reused. Further-
more,, software Ruse is distinct from carrying-over

code, that is reusing code from one version of an
application to another. To summarize, reusable soft-
ware is software that was designed to be reused. The

major portion of my talk will focus on examining the

rhetorical question, "Where does reuse start?"

Introduction

If I were to ask you, "vVhere does reuse start?', your

reply might be, "What do you mean? That seems like
a pretty vague and nebulous question!"

! agree, so I have done a little top-down stepwise
refinement and broken the question up to focus on
three areas - the three P's of software reuse: product,

or what do we reuse, process, or when do we apply
reuse, and finally personnel, or who makes reuse

happen. I guess ! could have called it the three W's
of reuse: what, when, and who.

"Why is this an important question?" you might ask.
The first answer that comes to my mind is that if you
would like to build a tool to help reuse software, it

would be reasonable to know: 1) what you were
trying to reuse, 2) when you would be doing it, and 3)

who would be using it. That is one reason, a pretty
good reason, but not the only reason for asking the
question"Where does reusestart_ Rhetorically, if
one could understand the ramifications, implications

and economic justifications of the answer to the ori-

ginal question, "Where does reuse start?', one would
better be able to answer the question "Where should
reuse start?" and "What needs to be done to make it

happen?" This is the real question I think we are here
to answer.

Prod

If one examines the question of "Where does reuse

start?" by focussing on the products being reused, one
could ask "Does reuse start with eode_ There is no

denyingthat softwarereusegenerallyends with"code'.

But, this still is a pretty broad statement. After all,
code could be source code, object code, a high level

language statement, a function,a procedure, a
package, a module, or an entire program. The issue
raised then is "What is the granularity of the code that

you want to reuse?" The larger the granularity, the
larger the "win" is in productivity. The overhead for
finding, understanding and integrating a reusable soft-
ware component needs to be less than designing and

ORIGINALPAGEIS
OF POOR J .rTY

writing the code from scratch. This supports the
argument for the Ruse of higher granularity objects
such as software packages, modules or classes.

Just as we could debate the granularity of the object
being reused, one could argue about the level of
abstraction that is being manipulated. Does reuse
start with a design? A design is a higher level
abstraction compared to an implementation. Let me
emphasize that the advantage of sta.,'ting reuse from a
design is that a design is at a higher level of
abstraction than an implementation. Or, in other
words, a design has less implementation details that
constrain its applicability.

This brings out a point made in a recent paper I have
been writing called "Software Reuse Rules of
Thumb'. In it l propose two general rules of thumb

for software reuse: I) to separate context from
content and concept, and 2) to factor out common-

airy, or to rephrase this second rule a bit, to isolate
change. If one applies the first rule of thumb, a
program design, say at the detailed logic level, should
have absent some (but not all) of the contextual infor-
mation that will be supplied at implementation time.
That is, the implementation issues, such as specific

operating system or hardware dependencies, ate

neither part of the content, which is the algorithm or
data flow nor part of the concept, which is the func-

tional specification. I will address the second rule of
thumb, factoring out commonality, later.

Before proceeding, ! would like to emphasize the
importance of representation, especially from • tool

perspective. Remember I stated earlier that one of the
reasons for looking for an answer to the question of
"Where does reuse start._ was to provide a rational

forbuildingtoolsto assist in the muse process.This

impliesthat we would likea machine msnipulsble

reusabledesignrepresentation.Thisisnot •my! But,

Ibelievethestateofthe artisnow evolvingto • point

where thereme resultsof softwarereu_ startingfrom

design. The projects, that I am aware of, have been at
MCC, with the DESIRE system, and at Toshiba,

where in the 50 Steps per Module system, they are

working on an expert system to automatically genente
C, FORTRAN or Ada from low-levd design data-
flow charts. Furthermore, they claim success in
reverse engineering existing soRwsm by synthesizing

data-flow diagrams for potential reuse.

Continuingour mudysisof the question "Where does
reusestart?", could reuse start with • progmn's spee-

ilica/ton? By specification,I mesa • statement of
"what" a prod'am need's to do, not "now" it is sup-

posed to do it. There is a simple answer, yes, in
limited contexts, prolptm specificatiom can be reus-
able. But research in automatic prong tells us

that this is a hard problem to extrapolate outside of
narrow domains.

Spealcingfrom personal experience,we at IBM in
Owego havedevelopedsome reusableavionicsspecifi-
cations. When I say specifications, I mean
MIL-STD-2167 System Requu'ements Specifications
(SRS). They ate highly parameterized documents full
of empty tables and missing parameter values. The

systems analyst, in effect, programs a new module by
specifying the values in the tables of the SRS docu-

ment. An application generator then reads the docu-

ment and builds the data structures necessary to drive
the supportingsoftware.

Completing the waterfall model, we can ask the ques-
tion on whether reuse can start with a problem deft-
nition (requirements). This is an interesting question.
One might ask how? One could reason that if the
same requh'ements can be identified as being satisfied

by certain previously developed modules, then clearly
those modules are candidates for reuse. Well that is a

big if. It is significantly dependent on the traceability
of requirements to specifications, the traceability of

specifications to design, and the traceability of design
into code and, also into test cases,and documentation.

Here is Where a hypertext system's information web is

ideal for linking these artifacts together. With a
hypertext system, you can walk the beaten path to
t'md out what code to reuse. But, there is a catch. As

Ted Big_-rstaff has repeatedly stated, there is no free
lunch. You have to pre-engineer the artifacts to fit

into the network, and spend the time and effort to
create the links. Finally you need to somehow sepa-
rate the context of the objects from the content. One
mechanism for achieving this goal is through
parameterization. Parameter_tion is • way to extend
the domain of applicability of reusable software.
Parameterization agows • single module to be general-
ized overa set of solutions.

To summarize, tha issue we have been exploring

related to the question of *Where does reuse start?" is
really the question *What softwtm artifact does reuse
start withy Part of the answer lies in the fact that we

know that softwtm muse 8enerally endswith the reuse
of code. When= it start= depends on: 1) how much
effort we want to place in &veloping the reusable
artifact that we want to _ with, 2) how effectively

we can link it to an implementation, and 3) (maybe
not so obvious) how effectively we generalize the

implementation.

There is • fourth dependency havi_ to do with the

process of software reuse. This is topic I will address

subsequently. First I would like to reflect on the gen-
_tion i=me of an implementation. One must rec-

i

ognize that as we progress down the waterfall model,
from requirements to implementation, each artifact
adds more detail. An implementation is one
instantiation of a design. There could be several
implementations of a design just as there could be
several designs that satisfy a specification but that
have different performance and resource attributes.

The key is factoring out the commonality by sepa-
rating the context from the concept and content. The
concept becomes the functional specification. The

content becomes a template or generic object. The

context becomes possible instantiation parameters.
We have identified some of the dimensions and impli-
cations related to which software artifact to start reuse

with. I have concluded that code is a safe place to
start and is, in most cases, the place one ends up. I

also have mentioned that hypertext is the way to
establish the traceability between requirements, spec-
ification, design, tests and implementation.

PI'OCOLll

Turning to the software development process, one
could observe that most software reusestarts at the

implementation phase. One could modify the software
development process to include a step where, at

implementation time, one would look for existing
software to save having to write new code that would

do the same thing. With a little luck, this usually
works. But with a little foresight, this usually works
better. }low often is it the case that the code one

wants to reuse has to be modified because either it

was not implemented to exactly fit the new context it
is being reused in, or it was not implemented to

provide a parameter for adapting it to a different
context, or the design was such that it placed unneces-
sary constraints on the implementation? If the soft-
ware designer had not placed the (somewhat) arbitrary

design constraints, then the implementation could be
used as is.

Therefore, with a little foresight, reuse might better

start at design time. The implementer could then lev-
erage off the functionality of existing implementations.
This is where the bottom-up aspect of reuse meets the

top-down functional decomposition aspect of most
design processes. One could argue that object-
oriented design would eliminate this problem. Let me

say that object-oriented design helps reduce the
problem of the design not meeting the implementa-
tion, but pararneterization still is the key for control-

ling this process.

One could just as easily extend the same argument for
looking for reuse opportunities at design time, for the
same reasons, to the spedflcztion and r_lulremmts

analysis phases of the software life cycle. Again, by
identifying earlier on in the software development t/re
cycle, what is available to be reused, trade-offs can
made in the specifications, or designs can be tailored
to leverage off the existing software base.

Let me now io_t_roducesomewhat of a new phase in
the traditional waterfall model that has been added

explicitly to support software reuse. I define domain

analysis to be a generalization of requirements analysis
- instead of analyzing the requirements for a specific

application, the requirements of a generic application
are quantified over a domain. Applying my two rules
of thumb: commonality is factored out and context is

separated from concept and content. Reusable

objects are identified, and their context defined.

If one recognizes that the software development Life
cycle needs to be modified in order to inject software

reuse technology, then, relating to personal experience,
reuse opportunities and potential can be identified-at
code review time, or at design review time. If one
looks at the Programming Process Architecture used

in IBM, one can see these criteria called out as being
integral parts of the inspection process.

But then again, instead of reuse being addressed
during the software development effort, maybe reuse
could start as an alter thought (project follow-on).

After one pass through the software development Life

cycle, the second time through one can begin to see
the commonality between applications. Quoting Ted
Biggerstafl's rules of three "If you have not built three
real systems in a particular domain, you are unlikely
to be able to derive the necessary details of the

domain required for successful reuse in that domain."

As a "side point, there is a second rule of three.

"Before you can reap the benefits of reuse, you need
to reuse it three times." The empirical evidence 1 have
seen to date bear this out.

A better choice for where reuse should start is at the

beginning of a project (prelect start ap). Here, the
software development process can be defined, reusable
software libraries can be set up and standards as well

as tools developed.

To share with you again my personal experience, in
one large Ada project, A Computer Integrated Manu-
facturing (elM) effortinvolving 350K SLOC$, the

project had a PRL - Project Reuse Lead. He was
responsible for sittin 8 in on all design and specifica-
tion reviews to identify commonality between subsys-
tems and support the communication and application
of reuse technology. Because of software reuse, fac-

toring out commonality, the size and development
effort of the project was reduced by over 20%. This

ORIGINAL PAGE IS
OF POOR qUAIJ'rY

is a successful example of where muse started at the
beginning of a project.

But, then ag_n, maybe reuse could start at the end of

a project (pro_,_ wrap-up). I am reminded of the
General Dynamics approach for developing reusable
software related to an early version of the DARTS

system. Here, after a project was completed, and
before the design and development team was assigned

to a new project, they locked everyone up in a room
and wouldn't let them out until they developed an

archetype of the system. That is, they recorded how
and what to modify in the system so that it could be
reused in the future.

While this is one approach for developing reusable
software, it seems like putting the cart in front of the

horse. But, then again, it is reasonable, upon the
completion of any project to identify likely compo-
nents to add to a reuse library.

Finally, we are all in this for the bottom line. Let me
state my version of the Japanese software factory's
motto: "Ask not what you can do for your software,
but what your software can do for you." It makes

sense, dollars and cents, to capitalke on existing soft-
ware resources and expertise. But, you need to

develop a business case to justify the additional cost of

developing reusable software.

To summarize, the issue we have just explored related

to the question of "Where does reuse start._ is really
the question "Where in the software development life

cycle does reuse start?" Where it starts depends on I)
how one modifies the software development

to identify opportunities for reuse, and 2) how one
either modifies or extends the software life cycle to

identify objects to make reusable. The bottom-line is
that software reuse is a good example of software

engineering discipline.

pwamm_

Turning to the last dimension I identified related to

the question of "Where does Reuse Start?', we will
focus on the key players in the reuse ball game. The

fu'st player to come to bat is the prow'intoner. Does
reuse start with a Im_ramma? Moat pm_

are responsible for the design and implementation of
software. If they can identify a shortcut to make their

job easier, or to make them appear more productive
to their _t. rhea they probably will bc moil-
vated to _ sol, wine. But. while prolranma_

mitlht be inclined to _ software if it wu fun, or it
wu the path of least resistance,or if they are told to,
the real issue b "Who is going to create the software
to reuse in the first place?" Then_ needs to be • crit-

ical ma_ of quality software for programmers to draw
upon in order for them to fully subscribe to the reuse
paradigm! So, how do we bootstrap the system?

Maybe managers can instill a more altruistic attitude
on their programmers. This, of course, becomes a
question of budget cost and schedule risks associated
with the the extra time and effort needed to make

things reusable.

Reuse is a long term investment. Maybe the expense

of developing reusable software should be spread
across a pro/yect! With reuse raise to the project level,

there would higher potential for a larger return on
investment, plus more insight and experience in prior-
itizing what should be made reusable. Again, there is
no free lunch, A project manager would have to

authorize the cost. But project management is gener-
ally rewarded for getting a job done on time and
under budget. There is no motivation for making the

next project look good. This shortsightedness needs
to be resolved with top management.

Indeed, this is the case, both here and abroad. At
NTT, GTE, IBM, TRW, to name a few companies,

reuse incorporation and deposition objectives are
being set. For instance at NTT, top management has

set a reuse ratio goal of 20"/. on all new projects, with
a deposition ratio quota of 5"/.. That is, all new pro-

grams ideally should consist of at least 20% source
code from the reuse library and all new programs

should try and deposit at least 5% of their source
code to the reuse library (subject to the acceptance

guidelines, constraints, and ultimate approval of the
Reuse Committee).

But, upper management edicting reuse to happen
doesn't insure success. That is why there is a strong

argument for reuse to start in the classroom
(educator). The education system, while it is good at
teaching theory, might embrace a little more of the
engineering discipline and teach software building
block construction or composition of programs.
Courses are needed in domain analym, application

generator construction, and i_mmetedzed program-
ming, as well as the availability of pre-fabricated,
off-the shelf components structured to facilitate the
construction of new applications in a classroom

setting. Apin, critical mass is needed to bootstrap the

system.

Besides the mm mind set, maybe reuse shouldstart
with • tool set (rod devdopa). Peraonally, ! do not
see the need for exotic and elaborate tools to support

reuse. Although, ! am bilgi towards using a multi-

media hyp_ext system for the capture and represen-
tation of domain knowledp, which I consider trial
to understanding what and how to reuse software.

ORiG;NAL PAGE

OF POORqUP 'W

Have I run out of people who possibly could start the
reuse ball rolling? Have l saved my heavy hitter, for
last? Should reuse start with the cusiomer? It

depends on the customer! A large customer, like the
Department of Defense, could easily demand certain
reuse requirements be met. Of course, there might be
a small initial overhead cost associated with getting
the ball rolling, but once the system was primed, once
application domains were populated with certified,

pararneterized, well documented, reusable compo-
nents, then long term benefits could be reaped.

! have added the salesperson to this list of individuals

who could play a role in determining where reuse

might start. The reason is that if a salesperson knows
the marketplace and knows potential customers, then
they could play a key role in building the business
case necessary to justify the capitalization of software
for reuse.

FinaLly, I have added the systems analyst as being a

person who possibly could be instrumental in starting
software reuse. I admit, he joined the team late, but

he turns out to be a clutch player. Back to the issue

of putting the horse in front of the cart. Before you
can reuse software, you need software to reuse. Who

are you going to call? The domain analysts! Who are

the most qualified individuals in an organization to I)
analyze a problem domain, 2) determine logical sub-

systems and functions, and 3) determine the contents

or requirements of modules and anticipate the dif-
ferent contexts that they might be applied under? The
systems analysts. They have made life so difficult for

some of us programmers in the past by providing
incomplete or inconsistent or, worse yet, too detailed
specifications. This is a wonderful opportunity to
work together toward a common goal.

To summarize, the issue we have been exploring
related to the question of "_Vhere does reuse start?"
has been identifying the roles played by certain indi-
viduals in an organization related to making software
reusehappen. In retrospect, severalof the key players
had non-technical roles in the game! A point that
bears distinction and should come as no surprise,

Summq,ry

In conclusion, the goal of my presentation was to
bring to light issues surrounding software reuse. To

force you to question what you might have accepted
on blind faith. I have probably raised more questions
than I have answered, but, that is good. Hopefully it

will provide you opportunities for discussion. Finally,
I have shown, as a wise old owl once stated, "It is not

what you know, but who, you know.r that often is
necessary for success. Softwa_ reuse is no exception
to this rule, Software reuse is a people issue as well as

a technology issue.

ORIGINAL PAGE IS
OF POOR QUALITY

_ "7 ,_

, o

N91- 2730

A CONCEPTUAL MODEL FOR
MEGAPROGRAMMING

October 9, 1990

Will Tracz

MD 0210
IBM Federal Sector Division

Owego, N.Y. 13827

OWEGO@IBM.COM
(607) 751-2169

ii A Conceptual Model for _legtprollrzmming

Abstract

"Currently, software is put together one statement at a time. What we need is to put software together one
component at a time. '_ - Barry Boehm, at the Domain Specific Software Architecture (DSSA) Workshop,
July I1-12, 1990.

Megaprogramming, as defined at the ftrst ISTO Software Technology Community Meeting, June 27-29, 1990, by
Barry Boehm, director of DARPA/ISTO, is component-based software engineering and life-cycle management.
The goal of this paper is to place megaprogramming in perspective with research in other areas of software engi-
neering (i.e., fGtTna! methods and rapid prototyping) and to describe the author's experience developing a system
to support megaprogramming.

The paper, first, analyzes megaprogramming and its relationship to other DARPA research initiatives (CPS/CPL
- Common Prototyping System/Common Prototyping Language, DSSA - Domain Specific Software Architec-
tures, and SWU -- Software Understanding). Next, the desirable attributes of megaprogramming software compo-
nents are identified and a software development model (The 3C Model) and resulting prototype
megaprogramming system (I.ILEANNA -- Library lnterconnection language Extended by Annotated Ada) are
described.

Keywords: domain modeling, formal methods, inheritance, parameterized programming, rapid prototyping, soft-
ware engineering, and software reuse.

AlmTzct ii

I A ConceptualModel ForMegsprogramming
C

1.0 Introduction

"Megaprogramming is the type of thing you can go into a 3-star general's office and use to explain what
DARPA is going to do for them to make their software tess expensive and have better quality." - Barry
Boehm, at the ISTO Software Technology Community Meeting, June 27-29, 1990.

Software researchers and developers have long pursued the goal of increased software productivity and quality. As
the programming profession matures and basic research into programming languages and formal methods advance,
opportunities are emerging to apply some of these results to the software development process. This paper is
about component-based programming or megaprogramming, a term coined by Barry Boehm[2] at DARPA/ISTO,
which is an essential element of the DARPA Software Strategic Plan R. Reusing software components, instead of
re-writing them, is a long held[16], intuitively appealing, if not obvious, approach to increasing productivity and
quality. Systems developed based on reusable software artifacts, in principle, should cost less (partially attribut-
able to a shorter schedule), and contain fewer defects because of the "tried and true" parts used in its composition.
Unfortunately, a one-dimensional view of quality as being the "absence of defects" is not sufficient to explain the
necessary attributes of software that make it reusable (i.e., portability, flexibility, reliability, useability, and under-
standability are other essential attributes). The observation that "quality can not be tested into a program, but
needs to be designed into a program," is especially applicable to megaprogramming.

The goal of this paper is to examine the technical foundations of megaprogramming and to assess their effective-
ness for increasing the interoperability, adaptability, and scaleability of its components (i.e., the quality of its com-
ponents). To this end, this paper is organized into three sections. The first section summarizes and analyzes the
megaprograrrtming vision initially presented as part of the DARPA Software Technology Plan[21]. The next
section introduces a conceptual model for reusable software components (the 3C Model[23]) based on separating a
component's context (what can change) from the concept it encapsulates (the interface it exports) and its content
or implementation. The final section describes work in progress on a megaprogramming implementation,
LILEANNA{241 (Library lnterconnection language Extended by Annotated Ada), which combines the formal
methods of ANNA[14] and the pararneterized programming capability of OBJ[I il

2.0 Megaprogramming Vision

"Software productivity improvements in the past have been accidental because they allow us to "work faster".
DARPA wants people to "work smarter" or to avoid work altogether." - Barry Boehm, at the Domain
Specific Software Architecture (DSSA) Workshop, July 11-12, 1990.

Megaprogramming is envisioned as a giant step toward 2 increasing "development productivity, maintenance pro-
ductivity, reliability, availability, security, portability, interoperabiJity and operational capability[21." Megaprogram-
ruing will incorporate proven, well-defined components whose quality will evolve, in the Darwinian sense.
Megaprogramming requires the modification of the traditional software development process to support
component-oriented software evolution. Domain-specific software architectures need to be defined and imple-
mented according to software composition principles and open interface specifications. The resulting software
assets need to be stored and accessed in a repository ideally built on a persistent object base, with support for
heterogeneous software components in distributed environments. Finally, additional environmental capabilities
(e.g., hypermedia) _tre needed to provide software understanding at the component and architectural levels.

The subsections that follow describe some of the focal points of the DARPA Software Technology Plan[21l
related to megaprogramming. In particular, an environment to support megaprogramming (Megaprogramming
Software Team) and the generation and promotion of megaprogramming components (Megaprogramming Soft-
ware Interchange) are addres,_:l.

I Prior.to Boehm's use of the term "megaprogramming", Joseph Goguen[l I I suggested the term /t.v/perprol[ramm/nf/to refer
to a similar, if not identical, programming paradigm. The author has suggested using the term
programm_-with-du_large_24} to emphasize the granularity of the objects being manipulated.

2 The analogy used by Barry Boehm was that, historically speaking, one might vi.ev_,machine language pro_amming as
resulting in productivityat a snailspace,assemblerlanguageprogramming-- a turtle's pace,programming m rut_t_rN,

:_ ' C-oi A_a -:- Walking,and megaprogramming as walking with sevenleagueboots.

ORIGINAL PAGE IS

OF POORQU/UJTY

Introduction I

2 A Conceptual Model for Megapro|rammin| - _ •

2.1 Megaprogramming Software Team

"Configuration = Components + Interfaces + Documentation
Software Team _ Configuration + Process + Automation + Control." - Bill Scherlis, at the ISTO Soft-
ware Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software team is to create an environment to:

1. "manage systems as configurations of components, interfaces, specifications, etc.,
2. increase the scale of units of software construction (to modules), and
3. increase the range of scales of units of software interchange (algorithms to subsystems)[21]."

The key dements of the megaprogramming software team are:

Component sources -- currently, components under consideration are from reuse libraries (e.g.,
SIMTEL20[51 or RAPID[20]) or COTS (Commercial Off-The-SheLf) software (e.g., GRACE[II or
Booch[3] components). Application generator technology is desirable to provide for adaptable modules
while re-engineered components (e.g., CAMP[17]) could provide additional resources. It is desirable to
move toward new customizable components with a rapid prototyping capability.

Interface definitions -- currently, there exists an ad hoc standard consisting of Ada package specifications
and informal documentation. It is desirable to develop a Module Interconnect Formalism (MIF) with
hidden implementations supported by formal analysis and validation tools.

System documentation -- currently, simple hypertext systems are supporting the (often ambiguous and
incomplete) textual documentation associated with software components. It is desirable to create a
repository-based, hypermedia environment that provides traceability between artifacts and supports the
capture, query, and navigation of domain knowledge.

Procem structure - currently, there exists no predictable software development process. It is desirable to
develop an evolutionary development life cycle with support to domain engineering, integrated require.
ments acquisition, and reverse/re-engineering.

Pr_ Automation -- currently, CASE tools are either stand-alone or federated (e.g., Unix_). It is desir-
able to integrate the tools and create a recta-programming environment to support process de_ription and
refinement.

• Control/Asscqmment -- currently, only a priori software metrics and process instrumentation exists. It is
desirable to integrate the measurement process with tool support and to create a cog-estimation capability.

The megaprogramming software team initially expects to draw resources from the STARS (Software Technology
for Adaptable Reliable Systems) SEE (Software Engineering Environment) program. Future tools will be contrib-
uted by Arcadia122], CPS/CPLI6I (Common Prototyping System/Common Prototyping Language), DSSA
(Domain Specific Software Architectut_s)[18l, POB (Persistent Object Bases), SWU (Software Understanding),
and REE (Re-Engineering) programs. Interface and architecture exxlification will be supported by a Module
Interconnect Formalism (MIF), which is an outgrowth of the CPS/CPL program.

The goal of MIF is to adequately describe a soRware component such that its selection and use can be accom-
plished without looking at its implementation. The component interfaces will include, not only the entry points,
type definitions and data formats (e.g. Ada package specification), but a description of its functionality, side effects,
performance expectations, degree and kind of assurance of consistency between specification and implementation
(reliability), and appropriate test eases. DSSA will provide the initial,avenue for the application of this tech-
nology. (An architecture is a collection of interfaces.) Incremental asset creation and customization will be guided
by the CPS prototyping technology.

Asset capture and re-capture will be supported by SWU'._ design record, hypertext browsing capability, and REE.
The design record will provide a "common data structure for system documentation and libraries[211". The sug-
gested data elements in a design record include:

3 Unix is a trademark of AT&T Bell Laboratories.

ORIG_'NAL PAGE 18

OF PO0

, M_ap¢olFmmming Vision 2

, 3 A Conceptuid Model for Megaprogramming

• library and DSSA links,
• design structure,
• access rights,
• configuration and version data,
• hypertext paths,
• metric data,
• requirement specification fragments,
• PDL texts,
• interface and architecture specifications,
• design rationale,
• catalog h,.fcrrnation, and
• search points.

2.2 Megaprogramming Software Interchange

"Software Interchange = Software Team + Convention + Repository + Exchange." - BiU Scherlis, at the
ISTO Software Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software interchange is to "enable wide-area commerce in software compo-
nents[21]". The megaprogramming software interchange, which is integrated with the megaprogramming software
team, consists of the following elements:

• Conventionalization -- currently, conventions are emerging. It is desirable to create a cooperative decision
and consensus mechanism that supports adaptable, multi-configuration libraries, which present a standard
search capability.

• Reposttocy/Inventesry-- currently, repositories support code storage only. It is desirable to retain, assess,
and validate other software assets such as architectures, test cases, specifications, designs, and design ration-
ales.

Exchange/Brokerage -- current intellectual property rights.and government acquisition regulations ate sti-
fling a software component industry. It is di_sirable to populate certain application domains (via DSSA)
and to support the creation of an electronic software component commerce by defining mechanisms for
access control, authentication/certification and establishing composition conventions.

The megaprogramming component interchange expects intially to draw software components from the reuse
libraries in STARS and DSSA with future support derived from POB, and CPS/CPL (MIF).

3.0 Conceptual Model for Software Components

"Before components can be reused, there needs to be components to reuse."

As discussed in the previous section, megaprogramming requires the definition of proven, well-defined compo-
nents that are implemented according to software composition principles. This section presents a formal frame-
work for developing reusable software components that leverage the compositional capabilities of the
megaprogramming language LILEANNA (covered in the next section of this paper). A conceptual model1241 is
described that distinguishes between three distinct aspects of a software component:

1. the coneep_ or abstraction the component represents,
2. the content of the component or its implementation, and
3. the context that component is defined under, or what is needed to complete the definition of a concept or

content within a certain environment.

These three aspects of a software component make the following assumptions about their environment:

!. There is a problem space (application domain) that can be decomposed into a set of concepts (or objects if
one prefers using an object-oriented paradigm).

2. There is a solution space that is characterized by the contents (implementations) of the concepts.

ORIGINAL PAGE IS

OF poo O AI..ITY
Megspragramming Vision 3

4 A ConceptualModel ,_, Megaprogramming

3. The solution space is populated by several different knplementations, or "* .pararneterized 4'' implementa-
tions that can be instantiated by different contexts within the solution space.

Before proceeding further into the material hn this section, it is L,nportant for one to realize the subtle implications
that "dynamic bindin.g" has on one's approach to programming. The conceptual model described in this section
assumes a programtmng language and environment with aH binding of parameters done prior to run time (with
the exception of actual parameters passed to subprogram operations). The model recogldzes that binding can
occur at or before compile time, and at load/link edit th'ne. This view of binding, to some readers, may appear
limiting (which, _ some sense, it is), but this [imitation, in reMity, is a trade-off for early error detection (strong
typing), which, in some application areas, is considered to be of greater importance.

The rest of this section defines the terms context, content, and concept, in more detail and describes their relation-

ships to moduladzation, specification, interface design and parametedzation.

3.1 Three Aspects of a Software Component

This conceptual model for software components is motivated by the need to develop useful, adaptable, and reli-
able software modules with which to build new applications. These three needs are addressed individually by the
model.

I. A useful component meets the high-level requirements of at least one concept neces_ry to design and
implement a new software application.

2. An adaptable component provides a mechanism such that modules can be easily tailored to the unique
requirements of an application.

3. A reliable component is one that accurately implements the concept that it defines.

This conceptual model for software components, referred to as the 3-C modd, is based on three aspects of a soft-
ware component: concept, context, and content. These three terms are addressed individually in the subsections
that follow.

3.1.1 Concept

"Domain analyJis is the building up of a conceptual framework, informal ideal and relations; the
formalization of common concepts." - Ted Biggerstaff, MCC.

The concept represented by a reusable software component is an abstract description of "what" the component
does. Concepts are identified through requirement analysis or domain modeling as providing the desired
functionality for some aspect of a system. A concept is realized by an interface specification and an (optionally
formal) description of the semantics (as a minimum, the pre- and post-conditions) associated with each operation.
An Ada package specification (operations, type and exception declarations) for a stack abstract data type, with its
behavioral semantics described in Anna[14], is an example of a reusable software concept.

3.1.2 Content

"The ability to convert ideas to things is the secret of outward success." - Henry Ward Beecher.

The content of a reusable software component is an implementation of the concept, or "how" a coml3onent does
"what" it is suppo,u_d to do. The software component conceptual module assumes that each reusable software
component may have several implementations that obey the semantics of it's concept (e.g., operational specifica-
tions are the same, but the behavioral specifications are different). The collection of (28) stack packages found
among Grady Booch's[3] components is an example of a family of implementations for the same concept (stack)

Perhaps"generalized"isa betterword.
.;'_ = = =

ConceptualModelforSollwareComponents 4
x

5 A Conceptu,,IModel for Megaprogramm;ng

3.1.3 Context

"Understanding depends on expectations based on familiarity with previous implementations." - Mary Shaw,
SEI.

One of the failures of software reuse is that user's expectations of a reusable software component do not meet the
designer's expectations of the reusable software component (the square-peg-in-the-round-hole syndrome). By
explicitly defining the context of a reusable software component at the concept and content level, and formally
specifying its "domain of appLicability", the user can better select and adapt the component for reuse.

The context of a reusable software component takes on three dimensions:

1. the conceptual context of a reusable software component - how the interface and semantics of the module
relate to the interface and semantics of other modules,

2. the operational context of a reusable software component - what the characteristics of the data being
manipulated are, and

3. the implementation context of a reusable software component - how the module depends on other
modules for its implementation.

Parameterization, inheritance and importation of scope through the use of abstract machine interfaces arc all lan-
guage mechanisms that assist in separating context from content. Within the framework of the 3-C model, one
uses these language constructs as follows:

1. one specifies the conceptual context of a software component by using inheritance to express relationships
between concepts (module interfaces). This occurs when two concepts share the same syntax and seman-
tics.

2. one defines the operational context of a software component by using genericity to specify data and oper-
ations on the data being manipulated by a module (at the conceptual or implementation level).

3. one decides on the Implementation context of a software component by selecting the operations to be used
for and by the implementation of a module. These operations are external to the component. Inheritance
or importation of scope are the two languages mechanisms that support the definition of a module's imple-
mentation context.

One should note the expficit separation of the roles of code and type inheritance in the model. Type inheritance is
used to express the conceptual context of a module. The conceptual context of a software module forms a true
partial order in that the concept inheriting another concept "is a" subtype of the latter concept. Code inheritance
is used as an implementation mechanism and may or may not be the same as the type inheritance used to express
the conceptual context of the concept associated with the software component for which the implementation is
being created.

An example of conceptual context is a stack that can be used to describe the interface of a deque (double ended
queue). The operational context for a deque is the type of the element being stored. The implementation context
of a particular deque implementation might be a sequence abstraction. That is, the implementation would be
designed to refer to operations in an abstract machine interface found in a sequence concept, which could have
several implementations (e.g., array or linked List). Alternatively, the deque could be indirectly implemented (i.e.,
generated in the megaprogramming sense) by simply

I. renaming some of the operations in an implementation of the .,tack (i.e., Push and Pop would become
Push_Right and Pop_Right),

2. adding some new operations (Push Left and Pop_Left), and
3. inheriting the rest (e.g. Print, Length, ls Fmpty, etc.).

Using the syntax of LILEANNA, the following megaprogram would generate the (parameterized module) deque
de.,u.-ribedabove:

make Deque[Trtv] is
Stack [Trtv] * (rename (Push -> PushRtght)

(Pop => Pop_Right)
(Stack => Oeque)

• (add Push_Left, Push_Right)
end;

Conceptual Model for Sol.are Components S

6 A Cunceptu"lModet for Megaprogramming

The selection of an implementation, or the content of the concept is determined by trade-offs in context. Clearly,
knowing the characteristics of the type of data structure being manipulated will lead to more efficient implementa-
tions. This can result in the population of a reuse Library with several efficient implementations of the same
(parameterized) concept, each talJored to a particular context. At design time, a programmer could identify the
concept and define the context it is being manipulated under based on requirements or operating constraints. At
iJnplementation time, the programmer could instantiate an b'np[ementation of the concept with the conceptual
contextual information plus any other contentual contextual information neces.*_7.

Separating context from concept and content complements the work of Pamas[]9[in suggestin 8 that the quality of
software can be improved by isolating change. It has been demonstrated that software is more reusable, or more
emily maintained, if the types of possible modifications to the software axe taken into consideration at design time.

4.0 LILEANNA

[,ILEANNA (LIL Extended with ANNA (Annotated Ada) [14]) is an implementation of LIL (Library Intercon-
nect Language), proposed by Joseph Goguen [9] as a MCL (Module Corn .position Language) for the program-
ruing language Ada[25]. LIL is a language for designing, structuring, composing, and generating software systems.
It is based on the work of Goguen and Burstall on the language CLEAR[4] and Goguen on OBJ[8 I. I,[L was first
introduced at the Ada Program Libraries Workshop in Monetary California. It was later refined for publication in
IEEE COMPUTER[10]. Since then it has been the interest of several researchers[7, 12, 13, 24I.

The primary design goals of LIL were:

1. to make it easier to reuse software written in Ada,
2. to facilitate the composition of Ada packages,
3. to support an object-oriented style of design and documentation for Ada,
4. to rapidly prototype new applications by integrating executable specifications with the controlled manipu-

lation of source code,
5. to avoid recompilation, and
6. to support maintenance of Ada programs and families of programs.

The power of megaprogramming in LILEANNA centers on the ability to compose new packages with package
and subprogram expressions via the make statement. Existing packages may be manipulated through package
expressions to specify the instantiation, aggregation, renaming, addition, elimination or replacement of operations,
types or exceptions.

LILEANNA supports the structuring and composition of software modules from exi_ing modules. One can

1. instantiate a parameterized module to create
a. implementations of operations,
b. a simple package/module, or
c. a parameterized package/module (generic).

2. Compose/structure modules by
a. combining other modules (inheritance and multiple inheritance) (e.g., merging two module's oper-

ations and types),
b. adding something" to an existing (inherited or instantiated) module (e.g., adding an opebation),
c. removing something from the interface of an existing module (e.g., hiding an operation),
d. renaming something (e.g., purely textual changing the name of operation in an interface),
e. selecting from a family of implementations, or
f. replacing something in an existing module (i.d., a pure swap -- a remove and add combination).

The result of evaluating a LILEANNA composition/megaprogramming statement (i.e., a make statement) is an
executable Ada package specification and body that either is

1. a "stand-alone" flat module (nothing imported), or
2. a hierarchy, with selected functionality imported and perhaps repackaged.

Note that since there is no inheritance in Ada, composition that uses inheritance will need to either import all
modules in the inheritance hierarchy (being careful to rename those which might result in ambiguity), or include

s Where "something" is a sort/type, operation, exception, or in some cases, an axiom.

Concel_al Model for 5ollware Components

7 A Conceptual Model for Megaprogramming

all necessary functionality directly in the implementation (package body). In either case, the resulting user inter-
face (package specification) should not be cluttered by such details.

4.1 Formal Foundations of LILEANNA

LILEANNA has its formal foundations in category theory 6 and in initial and order-sorted algebras. These con-
cepts form the basis for advances in algebraic specifications and type theory. Many type systems are based on the
concept of an algebra. An algebra defines a set of values and the operations on them just as an abstract data type
defines the data of '.he type and provides operations on them.

Program semantics in LI[,EANNA axe expressed in first order predicate calculus rather than using re-write rules (a
la OBJ) as a way of implementing conditional order-sorted equational logic.

4.2 LILEANNA Language Constructs and Examples

LILEANNA is a language for formally specifying and generating Ada packages. LILEANNA extends Ada by
introducing two entities: theories and views, and enhancing a third, package specifications. A LILEANNA
package, with semantics specified either formally or informally, represents a template for actual Ada package spec-
ifications. It is used as the common parent for families of implementations and for version control. A theory is a

higher level abstraction, a concept (or a context), that describes a module's syntactical and semantic interface. A
view is a mapping between types, operations and exceptions.

Programs can be structured/composed using two types of hierarchies:

1. vertical: levels of abstraction/stratification, and

2. horizontal: aggregation and inheritance (type and code).

LILEANNA supports this with two language mechanisms

1. needs: import dependencies, and
2. imliort, _oteet, or extend: three forms of inheritance, and include, a subtyping construct.

Theories are art encapsulation mechanism used to express the requirements on generic module parameters. Theo-
ries also play a role in building horizontal and vertical hierarchies by def'ming the interface requirements for
modules that later can be instantiated with a more concrete implementation. Views map theories to theories, or
theories to packages, or pieces of packages. One powerful feature of LILEANNA is the encapsulation of parame-
ters in theories. With this capability, the semantics of parameters can b_ formally specified and the domain of
applicability of a module can be explicitly qualified.

The generative capability of the LILEANNA is provided by package expressions, a "super make"' feature for
creating new packages from existing packages through horizontal, vertical and genetic instantiation. Package
expressions manipulate Ada packages and their contents based on their relationships to LILEANNA packages,
theories and views. The basic operations supported are importation in the form of inheritance, specialization in
the form of instantiation, generalization, and aggregation. Finally, the contents of modules can be manipulated
through * .package operators by indicating what entities are being added, hidden, renamed, or replaced.

LILEANNA goes beyond the Ada irtstantiation capability in that generic packages can be composed to create new
generic packages without themselves being instantiated. Partial instantiations are also possible. A view is used to
instantiate a generic package. Default views can be computed if only package name is supplied. Alternatively,
mappings of formal to actual parameters may form an in-line view as part of a package expression.

The foLlowing example illustrates several LILEANNA language constructs. In the example, the package
lntegerSet is made from a parameterized LILEANNA package, LILSet. This example is very similar to the
instantiation of an Ada generic, except that in Ada, the instantiation process is done at compile time In
LILEANNA, the generic instantiation is done prior to compile time. This results in Ada source code which is
ready to be compiled, composed or further instantiated.

6 Goguen has suggested that LILEANNA is based on another 3-C model -- Category theory. Collmits, and Comma Catego-
ries.

Make is a UNIX term and command for the process of selectively compiling and linking compiled output., to make an
executable module.

LILEANNA 7
x

8 A Conceptual Model for Megzprogramming
4

make Integer_Set is LZL_Set[Integer_View] end;

Attention should be paid to the view (shown below), [nteger_.View (from theory Triv to 'the Ada package
Standard), used ha the make statement above. There is an expficit mapping between the type Element and the
type Integer. The point to be emphasized is that this mapping can be given a name and reused in other
instantiations.

view Integer_View :: Trtv => Standard

types (Element => Integer);

end;

ts

Alternatively, as shown below, the instantiation could have been stated as

make Integer_Set is

LIL_Set [view Triv => Standard
end;

is types (Element -> Integer);]

In this case, the view does not have a name, but the mapping is explict to this particular instantiation.

The following example illustrates the use of horizontal and vertical composition. A generic package (Short Stack)
is generated by selecting an array implementation (List_Array) of the llst interface theory (ListTheory) needed by
the LILEANNA package (LIL Stack). It is assumed that the LILEANNA package (LILStack) has a compa-
rable Ada package (Stack) and t'hat an explicit view may or may not exist between them.

make Short Stack ts

LZL_Stack -- inherit Stack Package

needs (List_Theory -> List_Array)
-- supply array package

end;

(horizontal cou_ositton)

(vertical composition)

The foUowing is an example of a make statement that instantiates the genetic LILEANNA package Sort according
to the view Nat_Default (not shown), which maps the Natural numbers and the pre-defmed linear order relation-
ship onto the theory of partially ordered sets.

make Sort_Lists_of_Naturals is
Sort[Nat_Default]

needs (ListP -> Linked_List)
end;

An example of a more involved make statement using multiple inheritance and package operators follows.
based on an existing set of Ada packages that define_ an Ada-Logic Interface[15q package for reasoning.

It is

LILEANNA

9 ._ Conceptual \lodet for ?vtegaprogramming

make New..Ada_Logic_Interface is
Identifier_Package +
CTause_Package*(hide Copy) +

Substitution,Package +
DataBase_Package +

Query_Package*(add function Query_Fai|

end;

(C: Clause;

L: List_Of_Clauses)
return Boolean)

*(rename (Query_Answer => Query_Results))

The result is a merged package specification where,

l. the Copy operation is not available on Clauses,
2. an additional operation, Query_Fail, now augments those inherited from the specification, Query_Package,
3. the Query_Answer operation is not available in the resulting interface, instead, the Query_Results operation

can be invoked.

5.0 Conclusion

"We should stand on each others shoulders, not on each others feet." - Peter Wegner1261

Megaprogramming is a new programming paradigm that requires both a critical mass of software components and
a disciplined approach to program design and specification. This paper has presented one approach to megapro-
gramming that is based on a formal model (the 3-C Modcl) for developing reusable software components. This
model gives insight into the relationships between type inheritance, code inheritance, and parameterization that is
essential for providing the adaptability and interoperability of software components. The corresponding imple-
mentation, LILEANNA, serves as a valuable vehicle for exploring megaprograrnming concepts.

6.0

o

*

,

4.

,

6.

,

.

,

References

Berard, E.V. Creating Reusable Ada Software.
ability and Maintainability, September 1986.

Boehrn, B. DARPA SoRware Strategic Plan.
Meeting, June 27-29 1990.

Proceedings of the National Conference on Software Reus-

Proceedings of [STO Software Technology Community

Booch, G. Software Components with Ada. Benjamin Cummings, 1988.

Burstall, and Goguen, J.A. The Semantics of CLEAR, a Specification Language. Proceedings of the
1979 Copenhagen Winter School of Abstract Software Specification, pages 292-332, 1980.

Conn, R. The Ada Software Repository. Proceedings of COMPCON87, February 1987.

Gabriel, R.P. (editor). Draft Report on Requirements for a Common Prototyping System. in AC,'d
SIGPLAN Notices, 24(3):93-165, March 1989.

Gautier, R.J. A Language for Describing Ada Software Components. Proceedings of Ada-Europe Con-
ference, May 26-28 1987.

Goguen, J.A. Some Design Principles and Theory of OBJ-0, a Language for Expressing and Executing
Algebraic Specification of Programs. Proceedings of Mathematical Studies of Information Processing,
pages 425-473, 1979.

Goguen, J.A. LIL - A Library Interconnect Language. in Report on Program Libraries Workshop, SRI
International., pages 12-51, October 1983.

LILEANNA 9

I0 A ConceptualModel for Megaprogramming

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Goguen, J.A. Reusing and Interconnecting Software Components. IEEE Computer, 19(2):16-2fl, Feb-
mary 1986.

Goguen, J.A. Hyperprogramming: A Formal Approach to Software Environments. Proceedings of Sym-
posium on Formal Approaches to Software Em'rionment Technology, Joint g.vstem Development Corpo-
ration, Tokyo, Japan, January 1990.

Ilarrison, G.C• An Automated Method for Referencing Ada Reusable Code Using t,IL• Proceedings of
Fifth National Conference on A da Technology and Fourth Washington A da Symposium, March 17-19 1987.

Liu, D.B. A Knowledge Structure of a Reusable Software Component in I..IL.. Proceedings of SLrth
National Conference on A da Technology, March !4-17 1988.

Luckham, D. and vonflenke, F•W. An Overview of Anna, A Specification Language for Ada. IEEE
Software, 1(2):9-22, March 1985.

Madhav, N. and Mann, W. Abstract Specification of Automated Reasoning Tools: An Ada-Logic Inter-
face, Program Analysis and Verification Group, Stanford Lrniversity, 1989.

Mcllroy, M.D. Mass Produced Software Components. Proceedings of NATO Conference on Software
Engineering, edited by Naur, P., Randell, B. and Buxton, J.N., pages 88-98, 1969.

McNichotl, D.G., Palmer, C., et al. Common Ada Missile Packages (CAMP) Volume I: Overview and
Commonality Study Results, McDormel Douglas Astronautics Company, :AFATL-TR-85-93, May 1986.

Mettala, E.G. Domain Specific Software Architectures presentation at ISTO Software Technology Com-
murtity Meeting, 1990•

Pamas, D.L. A Technique for Software Module Specification with Examples. Communications of the
ACM, 15(5"):330-336, May 1972.

Ruegsegger, T. Making Reuse Pay: The SIDPERS-3 RAPID Center. IEEE Communicatiortt Magazine,
26(8):816-819, August 1988.

Scherlis, W.L. DARPA $oRware Technology Plan. Proceedings oflSTO Software Technology Commu-
n/ty Meeting, June 27-29 1990.

Taylor, R., et al . Foundations for the Arcadia Environment Architecture. Proceedings of Third Sympo-
sium on Software Development Environments, pages l-13, November 1988.

Tracz, W. The Three Cons of Software Reuse. Proceedings of Fourth Workshop on Software Reuse
Tools., 1990.

Tracz, W.J. Formal Spec_¢at/on of Parameterized Programs in LILEANNA, PhD thesis, Stanford Uni-
versity, 1990. In progress.

U.S. Department of Defense, US Government Printing Office, The Ada Programming Language Refer-
ence Manual, 1983.

Wegner, P. Varieties of Reusability. Proceedings of ITT Workshop on RetL_ability Programming. Sep-
tember 1983.

References i 0

Ada Net
John McBride

Planned Solutions

_ _ i "_

AdaNET

Presented to
RICIS '90 Software Engineering Symposium

November 8, 1990

Presented by
John McBride

Planned Solutions, Inc.

AdaNET P 'ogram

• Five Year R & D Effort to Advance the State of Software
Engineering Practice

. National Facility in West Virginia to Increase U.S.
Productivity, Economic Growth & Competitiveness

• Enhance Existing AdaNET System to Provide a Life Cycle
Repository for Software Engineering Products, Processes,

,&Interface Standards Related Information Services

Ad=NE'r 1

Planned
Solutions, Inc.

Purpose and Scope

Ad•NI[T |

• Transfer Software Engineering Technology Within the Federal
Sector & to the Private Sector

• Reusable Software Components Useful in All Phases of
Lifecycle

• Englneerlng Process Descrlptlons for Developlng
Adaptable & Rellable Systems & Software Worthy of
Reuse

• Interface Standards

- More Conslstency In System Features,
• Simpler System Integratlon,

Aid In the Use of Metrlcs as Quallty Predlctors

• Related Information & Services

- Software Englneerlng Help Desk
- Conference Llstlngs
- References
. Networklng to Other Databases
- E Mall

Planned
Solutions, Inc.

AdaNET Goals

• Establish a National Center for the Collection of
Software Engineering Information

• Provide On-Line Life Cycle Repository

• Promote a Cultural Change Necessary to Improved
Quality & Efficiency

• Provide a Platform for Research in Technology
Transfer

AdaNET 3

Planned
Solutions, Inc.

AdaNET Benefits

• Decrease Software Costs

• Improve Quality of Software Systems

AdaNLrr 4

, Planned
Solutions, Inc

AdaNET is a National Resource

Accessible Via interNET and TeleNET Public Access Dial Up

Planned
A_.Nrr_ Solutions, In

Users of AdaNET

Small Companies - Reusable Components and Software
Engineering Help Desk will Allow These
Companies to be More Competitive

Large Companies - Large, Complex Systems can be Built
More Reliably and at Lower Cost with
Reusable Components

Academia - Facilitates Teaching and Research in Software
Engineering With Reusability

U. S. Government - Spinback Benefits to Government Software
Developers

J_laNirr i

Planned
Solutions, 1_

Major Research and Technology Issues
II

Application and
Dissemination Policies Software Reuse Strategies AdaNET Architecture

• Interagency Agreements

• Customer Licenses

• Data Rights

. Title and Use Guarantees

• Liability

• Organization Type

• Chargesand Profits

International Clients

• Military Restrict ons

o

• Domain • Modification

• Type • Classification

• Granularity • Retrieval

• Selection • Aselstsnce

• Configuration • Qualification

AdaNET Context
• Operating Modes
• Securltyand Integrity
• User Interface

AdaNET Services to Access
Resources

AdaNET Resources

• Information
• Products

. Experts

AdaNET 7

Planned
Solutions, In¢

AdaNET Enhancements

AdaNET Service Version Two (ASV2) Current System

- Hosted on Data General

CEO Office Automation Product Organized Files in Drawers
and Folders

- Keyword and Textual Search

ASV3 (late 1991)
- Unix Based

- Integrate JSC/Barrios Developed Autolib & Army/RAPID
Derived Technologies

- Natural Language Query, Facets, Keyword Search

ASV4 (late 1994)

- Object Management Support for Full Life Cycle Traceability

AdaNET $

Planned
Solutions, Inc

AdaNET User Registration

Mountain NET

P.O. Box 370

Dellslow, W.V. 26531

(304) 296-1458

(304) 296-6892 FAX

1-600-444-1458 help desk (Peggy Lacey)

AdJNET 10

Planned
Solutions, In

Current AdaNET Products and Services

Reusable Software Publlcstlqns

Army Ads Software Repository (227)* • CltaUons
STARS Repository (in process) • Newslettsrs
NASA/JPL Components (in process) • Standardl

Products Conf=r_

. Services (40)** • Announcements
• Software (141) • Paper Celia

E-Mail BBI
• Abstracts
• User ContrlbuUone

Iat=_ contract=

• Guided Study (102) • Awards
• Self Study (21) • RFPI

(s7e)
(19)
(92)

(112)
(20)

(129)
(21)

(lSl)
(177)

* - Functional Areas

** - Unique Rles

AdaNE'r I

Planned

Solutions, In,

Summary

• Life Cycle Approach to Reuse Can Provide a Significant Impact
on Software Productivity

• Software Engineering Information Provides Knowledge Transfer

° AdaNET is an Operational Program with a Prototype Development
and Evaluation Cycle

AdaNET 11

Planned

Solutions, In_

POSiX and Ada Integration
in the

Space Station Freedom Program

Robert A. Brown
The Charles Stark Draper ,Laboratory, Inc.

Overview

• POSIX Overview

• POSIX Execution Model

• Ada Execution Model

• SSFP Flight Software Ada Requirements

• POSIX/Ada Integration

POSIX Overview

• Portable Operating System Interface

for Computer Environments

• IEEE sponsored standards development effort

• Voluntary participation
• Concensus standard (75% required for approval)

• Purl_ose
• Define standard 0$ interface and environment

• Based on UNIX

• Support application portability at source code level

• Family of open system standards

• P1003.0"

• P1003.1:

• P1003.2:

* P1003.3"

• P1003.4:

• P1003.5:

• P1003.6:

• P1003.7"

• P1003.8:

POSIX Working Groups

Guide to POSIX Open Systems Environment

System Interface

Shell & Tools

Testing & Verification

Realtime

Ada Language Bindings

Security Extensions

System Administration

Networking

• P1003.9: Fortran Language Bindings

• P1003.10: Supercomputing

• P1003.11: Transaction Processing

POSIX Execution Model
P1003.1

POSIX process
• Address space
• Single thread of control executing in address space
• Required system resources

Process management
• Process creation -- fork() and exec()

• Process group and session
• Process termination -- exit(), abort()

Process synchronization
• Signals -- sigsuspend(), pause()
• Wait for child termination -- wait(), waitpid()

Process delay
• alarm() and sleep()

POSIX Execution Model
Realtime Extensions

• Priority scheduling

• Binary semaphores

• Shared memory

• Message queues

• Asynchronous event notification

• Clocks and timers

• High resolution sleep
• Per-process timers

Ada Execution Model

Language Definition

•Ada program
• Single address space

• Multiple threads of control

• Required system resources

• Task management
• Task creation -- elaboration, allocator evaluation

• Organization -- task master
• Task termination -- normal completion, exception

3

• Task synchronization
• Rendezvous

• Task delay

• Ada delay statement

SSFP Flight Software Requirements

• Multiple real-time programs sharing same processor

• Fixed priority, preemptive scheduler

• Single level dispatcher

• t'4o;_-olocking i/o and system calls

• Ability to schedule tasks for periodic execution

• Ability to schedule tasks to respond to specific events

Ada Execution Model
Realtime Extensions

• Scheduling
• CIFO cyclic scheduler

• Binary semaphores

• Shared data template

• Precision time services

• Event notification

• CIFO event management

POSIX/Ada Integration
The Problem

• POSIX looks from program outward
• Semantics defined for processes only
• Single thread assumption

• Ada looks from program inward

• Semantics defined for tasks within a program only
• Single program assumption

• Integration of POSIX and Ada
• Extend POSIX semantics to multi-threaded processes

• Extend Ada semantics to multiple programs

POSIX/Ada Integration
A Solution

• Extension of POSIX semantics to multiple threads

• Define system interface for threads
• Redefine existing services for multiple threads

• Signals
• Fork() and exec0

• Per process static data
• Semaphores, events and timers

• Extension of Ada semantics to multiple programs

• Global task scheduling

• Definition of shared package semantics
• Ada interfaces to multiprogramming services

• Process control -- start, stop

• Interprocess communication

@

Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown, University of Houston-Clear Lake

Assessment of Formal Methods

for Trustworthy Computer
Systems
Susan Gerhart

Microelectronics and Computer Technology Corp. (MCC)

I I I III I I ,

11)

6

"Applied Mathematics of Software Engineering"

college sophomore through Ph.D. level

Use

logic, set and sequence notation,

finite state machines, other formalisms

In

• system models

• specifications

• designs and implementations

For

• highly reliable, secure, safe systenas _,_. MQ:P

• more effective production methods _"_'r

• software engineering education _E'._

In levels of use

guidance- structuring what t o say _o._
rigorous, formal"

generated and worked proof obligations

mechanized: using proof assistants d. 8.

MCC Formal Mec&ods Transition Study Sessioa 1

I I III inil i il

A NonExecutable Spec Language: ASLAN

• State-transition based

• First order logic with equality

• Sections

,, Types (builtin and user constructed)

>, Constants & Variables

,, Defmitk_es & Axioms

>, Constraint

>, Transitions

• Generates verification conditions

7> IC => INV

>> For each t, IN' & PRE'(t) & POST(t) => INV & CON

• Limited type checking

• PASCAL-like syntax

• Levels (of refinement)

>> Additional VCs

• Derived from Ina Jo research (R. Kemmerer at UCSB)

T_lr

. I........ ml

Portion of an ASLAN Spec

f'_YPE ...

book is structure of (

title:string,

author: string,

subject! string),

copy,

copies is set of copy
VARIABLE ...

db: library,
st_fg: users,

bo_ower(copy): user,

FIN aext__id: pos_i_,tITL_L

l db = empty & staff = empty & next..id = 1
.,e_INVARIANT

'_¢0_"] forall c:copy

] " _ isi.n db -> available(c) xor borrower(c).---=noone)

L. cardmality(db,next_id- 1)

TRANSITION check_out(c:copy, u:user, s:user)
ENTRY c isin db & available(c) & s isin staff &

under._lim(u)

EXIT borrower(c) becomes u

WQll

...... I] 1 I I II I I I II

Workshop 20 J_,_ 1990 II _

An ASLAN-generated Verification Condition

consistency conjecture for check_out(c:copy, u:user, s:user):

(forall c:copy
c isin db' -> cfavai,lab_e] xor cfborro_ver] ~= aoo_e

c 1sin rib' & c(avai,lab{e] & s is.in staff' & tm_ler_lim'(u)

V.g,t
-c[availablel & c[borrower]*u

• &

__ db=db'&

staff* staff')

.>

(forall c:copy
c isin db -> c[available] xor c[borrower] ~= noone

&

true)

II

v_ dmq'Ll'_ • • * '

II

I

msJm beea _lecsed fro"esae-

o_iuu_'up_aJe ac_e, die pro-

t!¢, and the Setea oper=_on

.spon=n. It is specked

Here, I deline only the Z s'_ used in _lis atlJc_:

S:PX
x_S

x ,zS

SeT
SuT
S_T
S\T

{x}
N

S:FX

For this operadon m be pcrmmib_, the

pmce=or must be running a b=:kground

p_ece_. This process b r_ from

the process identifier and a fla_,

takes one of the values _t or

CRtqSE-ACT

ACTIVATE

lp(s_£cr-sP)

m,

SELECF-,qP S_rT.SP
tbroulboot CRUISE-MON - TF,.ST-PED.DE]:and CI._L_-SP

s_._. ___STOP-MAIN

SCHED-MA/N -_md,_0dAINTA_SF).z _a_,,a_)

C_S_'AC _ I State

F'_m 4: Cruise St_e Zoom-i,

Tools Catalogue

Languages

NonExecutable:

Z, VDM (at least 2 flavors), A SLAN, Larch, Estelle, ...

Executable: (prototyping)

Miranda, OBJ, me too, StateChart, Caliban,D, Prolog

Static Analysis

FUZZ, ASLAN + (all executable systems)

Language-tailored Environments

Raise, Larch, Gist, Statemate

C o_c_re_c y-ce_t_ered

CSP, CCS, Unity, Petri-nets, Spec, Lotos,

Temporally focused

L.0, ASLAN-RT, RTL, Timed CSP, Tempura, Temp,...__g,

Theorem Provers

over-Moore, HOL, Clio, m-EVES, B, Isabelle, OBJ,

HDM, Gypsy, uR'--_ - -

..... I .

_/
........................ LJ_. I

Sample in Progress
Project Parties Problem Status

CICS Oxford PRG Transaction Released,

IBM Hursiey Processing Measured (??)

Cleanroom IBM FSD Embedded, Released

NASA SEL Restructurer Evaluated

ZEE Tektronix Oscilloscopes On-going

Avalon/C++ C-MU Atomicity Preliminary

GKS, British Standards Graphical, Published

OA Doc. I_stitate Documents

Hypertext Dexter Grip Hypertext Report

Re(. Model I)euaaazk Concepts VDM90
,.,,..

SXL GTE Labs Pr_c_ls I_ zse

L0 _R_core r Protocoh In use

CASE Pvaxis Object Report,

M_nager product

Anti-MacEnroe Sydney Ia_' Te'aais Line l_pert

Device Technology Fault Detector (Occam,CSP)

Security

VIPER

Verified

Stack

,,,,,

Honeywell

Ford Aero.

Digital

TIS

RSRE,

Cambridge

Applications

LOCK

Multi-net Gateway

Secure VMS

Trusted Mach

Microprocessor

TooLs

Microp, assembler,

O.S.

In progress

Reports

Newsletter

Oncology U. Wash. Cyclotron Starting

Reactor Parnas, "' Shutdown Reports,

Control Ontario Hydro Certification Certified

Murphy U.C. Irvine Safety Reports

S'ACEM French RR Train Control ICSE12

MCC Focm_ Methods TransitionStudy
Session 2

II

. l

i

ct

SOFT NEWS
I_ ii | I I |

Ibw _ _a _ In_//ew ae im_da_¢/l m
Eclx_: GaM_ C,Nm,m
_C--E Sorh_ve
tOt_. L,<_ Vaqu_ G_,
L_ _Wmo¢ CA._JlCt20

ouL:8_iI_ ¢mNI8

Software safety focus of new British standard
(;,d,,n Gn_m,a.._ .%'eu_/'_/rm,

The British Defence Min_ry expects

thi._ _r_'in_ tha(_1tl requite the use of
fcMrmal med_ _h au_d _aticai

ver'it_ca_m ,m _ safe_/.critical software.

O_k, dc_'cG_er_ _ Wo_ that their
u)ff_re i.xn_ _[e_-cri6cal will be

exempt/'r,,m the requiremenuc
The smn(L_rd. MoD_d-0055. will ban

the use of ;_._.'mM_," language, limit the
,.,_ ,)1"high-level languages like Aria to
_d'c _uh_,c_._.:rod require the use of'static
an.dwis, h ;d._ _ts s_ndards for proof

enl_neers, it _111requite tha(an end-
meetsi_q_,_1",._u_esofxwm'e'ssa/e_,com-
i_a_ce, t_m t_,e en_mee_ luwemkem
accred_ed t;orm;d-me_o__

wi_in the past two _fs, md _a¢ a¢_
indepet_dem¢ emC_hnlg_-f_ skmlag
accredi_ac.m aim _gn off'on the system.
Thi._ is simil.'u" to the responsibility, and

requirc-m¢_ts en/:.orced on ly_.ems-sa/ety
engineers rot the ove_ project.

The O0_J start "daurd_ be m effect

for two)_ar_. during _,4_ch dine the
Defence Ministrvwill res_se iron the

b;u/_ of industry'_ experience. The intent
is to de_.elop a long-term standard, said

_c_in Ce,'u'y, a sofncu'e consultant for
the Bridsh na_T's procurement depart-

merit who is working on the 0053 stan-
dard. The ministry isabo wockin_g on
MoD-Std-0056, a hazard-anab_is standard
that _II help software de_lope_ deter-

mine where to apply formad methods
and mathematical verifgation, Geary
said. "Both mathematical _riflcadon

and hazard an,_l)_s must be performed
m pm_de _ofnvare with accelxabi_ risk.
Neither is adequme alone." said Nancy
Le_son. a software-safety expert m_d a
computer4cience professor at the Uni-

_tty of California at irxine,

Pros of formal methods. The 0055 stan-

dard has been called a "landmark" b 7

those in the softwage4afetyand formak

method_ communidet, who aqgue that

a_,!S_nin_sponsibilkym sofmuR en_i-

May1_

ricers. _s has I_en trm'liti, m in hardware

en_necdng, will help encour.'_e

change5 in dc_-.k_rtent methods that

_iil h_p a_sta-e ,rMe _ems. Safety is in-
cre.'t_nK_ im_ w_Int because software is

hecnming a g_eater part od'crkicaJ
ss_erns like aircr_t co_crr,_, me_c:U

devices, nuclcar-p¢_wer p_m¢.t, ea_. _arn-

ing defen._ _ern._, and missile controL.t,
thcs' said.

Mo_ _fnvare-_ngineering s_andards

d_p_r_i on teeing, which is not alwa,._t
rcEa/_, Gear" grid. "The Wohlem _d_

..are i that _.a m,u_ _._ a_'ain_ Rx.c.

T,cadnm. If _m didn't Ft dne _

w'are rig1_.'ke .,,akLHowever.

Deduce latls 7
 dmqi'e
m offorma/

amf ma emm a/
ved@¢ad for

ufet

mmJcal anal_is of formal specifications
nomOons can be used to find errors in

the spedficatio_s, L_Jon said.

The increasing number of tools like
Zed, Vienna D_lopment Method,
Spade. and Malpas will help make the

implementation of formal methocb possi-
ble becatk_e the_ tools c=m perform
s_tic anal,vset o(information flow and

semantics quicldv, rather than in the

yean required with manual techniques,
C,ear7 said.

Formal methods and mathematical ver.
ifKadon are often considered too dlfl_

cult to apply. Ge_y conceded. "There ia

a _ _ uneme,bu_k'squi_ M.prid_
that there ar_ a Im of keT pe_ql_ _lw've

c,wne artxmd after looking at i(.* he said.
Gerry cited IBM's Bri_h cles_-iopment
center, whic h decxied forcomm_ci:d

rt':l._ns _ not for g_ef_rt¢ or other

o_tt.',idC"requirenlcnts _ to use the Zed

formal ,neth._ on CIC_ _tupment.

"People's resi._tance is ha.,_'d on igno-
rance." C,_arv said.

.-_mothcr ,_ttrce ,_ resL._nce is the con-
fct-._ between f(_l. ma_ematica]
rneth_L_ ;u_l _'_ correctness.

"Gwrec_esS is a _goal for

real ._.scems. F,_" _. do you have a

"cocrec_" air_4_?" L_ said. "A
mare realimc amdumet_,goat.is to build

a ._a.e_ _at ,_t_._es a_given set of func-

eio_tal and mis_i,,n requirements while at
the _me time u'}_ng.to satisfy, constraints
ofsa_ w ..,_'curi W, and<osc" she said.

Ma_y. of d_."segoals_ ra_le-offsin

Le'vesom compare@formal,methods _o
cradicion0d hardware engineering: "Engi-
ricers build formal mathematical models

and _ me _ methods to deter-
mlne'_'_ber d_ model hascermin

desired p¢openies." she s_. "which
should be the role of farmmi methods in

software engineering." (Leveson's
"Sa/e W as a Software Qud_" es_ in this

iss_'s ¢_talityT_me. on pp. 8_8_. gives
mote details about this procel.)

"Both software en_t_et's _ hard-
ware engineers specify _," Oem'y
said."The only difference is how tangible

[the procluctl is." he said.
Sdll, _4rtware engineers do t_ce a bur-

den that their harclwwe
E_'neral_do noc the_of, their
product, said Manyn _ chairman
of Praxis S_ems. a _neerlng

consulting firm in Battk, E_,tand, that

does much work in sakW en_neering.
Traditional enginee, like bridl_e.build-
erl "nc'_er had technkluesTor design,
which is more imponam E_r software

that'swhered_ c_sCe_ity
come_ in. I¢'s no_ a ,qafmlr¢ IIm,_em but

ORIGINALPAGEIS
OF POORqu J'rY

_++ _++ ORIGINAL PAGE IS "1 ('0

-+ ++ OF...POORQUALrW

Figure I Structure of the Framewod(

Components _

Hierarchy

cmlm
• pwwlcm
• T,mm md ¢_mml_
• M_mil Ira"SlmdW_

$1"ANOAR06

pMrrt :

INMfrIh 8111TBII
IA/IITIr ILmmmll

I_lllr s: _ IllflllNT1r
imm,lmm_rll

PMITII

PMITN

I''----
/.QtA

71]

eP, • •

°\

Sub-Obj_ttves

clarity and precision

management of

¢_np_mty

_etf_mime_ d

validity

Objective:. sd_ut® specification
T._halqum

i m u i

syntax Md-mtic,; _',phi¢.,i
represeatati_; applic_ioQ svecific

language_gmeering notatiomL._ block

diagrams, rru_caa-ana mstrumdntation

diagrams, algebra, s transforms, discrete

equations_; g_tu__al language annotations;

structured natural laaguag_;/ubacta 61"

languages

abetraction; modularity; infotn_km

Uheo_ies; semm_os fc: notmions; re_iew

md inspection; " a(, __," ---

set ux_ t,tte

IEC tee.hniqw
I I

formal _

modelling; da_ flora "_.

diagrams; finite _a_

m_hia_/stalal

transition diagrama_

structure diagrams

forma/mathematic.a/

modelling;, data tim,

diagrams; finite state

machines/state

traasitiou dizgr_;

nm

pcotot_----J "-,.--;
simadatiwg _

a_mg; fmm_

moddrmCFagaa
inspections; fcmmd

-

F

i ._'__--t _...._

syntax and semantics; grap_cal

management of

complexity

self consistency of

specification

i

representation; appGcatkm s ific
language, neenn m block
diagrams, t_roces8 an_x msrrumentatioa

diagrams, algebra, z transfonm, discrete

equations; natural language annotations;

structured natural language; subsets of
languages

abstract/on; modularity; information
I

liiding; structured design technique

, i i|

animation -- vroof of lasts and
111 I

theories; _sema_ics f_r _; review

and insp_:t3oa; e:c_e_ion of _

proco_ypdng of selected pr_pe_es;

/;
testing;" _; experimentation;
experien-_e in the field; diversity of took

and people; use of al_a of pco_tanaq

language; langaages tha_ can cope with
different levels of abstraction

wc_
i

. I,t

fona_ _

/
tranaitioa
structure

formal mathe_

modelling;, data Ik_

diagrams; finite state

machines/state

transition diagraml;

structure diagrams

prototyping/animatioa;
simulation; fimetiomd

formal design

ram meak c/t_

waikthroughs;

functional testing

vtc _ ,

106 As Jl aA_ e_/_se/'i_ _oll_r, t_ im_ O(the developme_ a_/

mz=uLgem4mt proce_ b essential to the a_]_-vem_t and unLrance o(_. _ is a
req_rement that the system is wha_t it seems, that documentation is aztequze and under

coaligm'a_ion control and that the claims made about the system are valid.

Sub-Objectives

_tive and effective

management ¢ontro_

commitment of senior

management to safety

and quality

motivated and

Objective: integrity of process

Techniques l

QMS to ISO 9000; independent QA;

automated confi_ration management;

manual configuration management; clear

ddineatioa of authority and responsibility

for safety; adequate project planning, cost

estimation and monitoring tools and

procedures

awareness cam_ ce_c,_doe

approval _ demcmsta'a_ion of

ecoaomb: _; ne_pda_ry inspection;

[imh_iCy; _J_qimmai_ _ ,_d_,_
l I _

application domain and of sdtware

techniques used in project; clu_fication to

pro(emiona] _t; certificatkm;

safety culture

IEC techniques

_eddigm; Fagan

inspections; formal

design reviewj

107 Note: Within this technical framework only recommendations concerning

management controls and competency of staff" can be made. Other factors are importaat

and should be add_ during the project (eg safety culture considered in the sdectioa

of contractors). Similarly, broad security issues have not been considered. It may be

possible m future versions of the Framework to reference out these objectives to a QMS
standard.

-

(i) Maintenance and modification activities are inadequate. It shmdd be app_

that maintenance can be a dominant source of common mode failings is r_m,d_

systems. Also, maintenance will be particularly important in long lifetim_
or systems which are expected to evolve.

(ii) Security of the embedded code is violated. General consideration of secm_ty a_e

outside the scope of this framework, for further discussion see the pubU_cbm_ f_om

the DTI Commercial Security Centre [9].

(iii) Failures in the system violate the stated conditions under which the iste_ity is

ensured. The detection, toleration and management of such changes are ad&ressed

in the section on validity (K.2) and are not considered further in this section.

109 The need for maintenance of the hardware and software will affect the design of

the software structure and fault handling, reporting and recovery mechanisms. This is

addressed in section K.2.

_e_q.ms

integrity of
modifications

security: software

code unchanged

m_,_eMace ld_i_ id _;
manual conjuration management;

automated configuration management;

au_ocisa_ pcoced.ees, avai/_'ty o(

qualified s_; developmem facilities;

Quality Management Systems

_e_imiq_es

e_r_n_ti_odes

application of design standards and

development standards to modifications;

regression testing;, procedures for assessing

im _t an dim trance of chart e;

robust storage media; security;

administrative access controls; passwords;

safety critical data not changed by

operational staff': eacryption and other
fault tolerant techniques

comprehemiel

empirical and analytic

evidence

ree0oi_m c& residuad
d<mb_

I

demomu-a_m to

second or third parties

lifecych; s__i_ or"other f_

objectives

See 'satufactiom ofspeci_c-tio.'. J'm

addition reqlire: proof deliverable;

appropriate V&V techniques --

19_i_ reasonin,,docume_
revmws; evaluation of operating experience

of identical and similar systerrm; use of

proven or certiAcated components

ctaim limits; design guidanoe (e.g. 'no

single f_lure criterion') on system level

diversity

diversity _ txx_sT t_hni_..--,ml_ and

dimity of o_her t_
-- fault detection and containment;

QA a_! oectmical review

involvement o/" _; QA _ a

QMS; liason with Customer QMS;

compliance with Health and Safety at

WorkAct a_ _ _
and standards; safety record log ot

accomplishment summary; certi_catioa or"

people, procedures and component_

tem of"/ accepted mathematical inference svste or
iri vidence" common

language _

1_ 111

program; cheddi_;

Fagan inspectiom;

formal design review;
boundary value

analysis; error

guessing; error

seeding; perfoenmace

modelling; simalatio_

test coverage;

functional testing

dm,eckJist_;Fagm

im_oM; foemal
desi_ _evie_; feett
_ion and

diagnosis

_; Fag_m

inspections; formal

desi_ revit_

T

formal mathematical

modelling

/t_. SpecTra Screen Mock-up

Results

I
I I I I II

I ! HI I

I I
I I II

II I II

I

i el i

type : : cle_laretioa

date: : Jun 14 i0:05

author: : greene

Contents:: books is

1990

set of book"

i

REu_ 7 Co_e_rJ o_t_ Dec1 node lobel_ books

B_ _e one-of L_ks (dehorns the set membership rehui0n),_ &e is-of-

type and depends -upon _ (v is -of -type twhen v is• stem vaaitbleand t_ i_

type md Decl d/depends-on Decl d2 when thedecL_fion d2 mendons _e for-ud

end_ _ ;-d/).These _nks are by defaulti-v_b_ (m cut down on _e cluuer) but

can be _ az the .sez"s reqaesz. Pot"example, • user can click o• • u'an_tion node (a

node o0etai._ d,e eazry md exit coedidoas of an ASIAN ."tnsidon) and ask for all of

the aodes El rite_ 0a whkh thiswansi_oe depend& SpecTra then highlightsIll

of the aodes ia the _peci_i3a which can be _ed by _rdng at the clicked upon node

and following depends-u poe links. Thus the graphical repces_tadon of an ASLAN

specificadoa is essi= mo Ixomse dNa the textual rep_ SpecTn is slso able to

hightight tU the aodes wtddt _ qx_a • .u= q>eci/ted md¢ Tim _ _ _ _

s_ mod_ca_M a us_ cam be podmed to a/l a pm_ _'lhe s_ _

Udal lbme rode md types,fomud ASLANspecificsdoascsn enteredand
_ _ Addidomlly. I/P/A _xcmred infmmal mquh-em_s may coexist

in d_ dblnltme _1 Ilmte informal nodoas may be linked to the pot_oa of _ f_ _-

i_ukm _ m _ fm,maliza_on. For example, in the process of coming up with re-

quimmems for the h'_ dambcse, the following issue_ Should the concepts

and _ be iden_ed? _u (PrO and con) wese _iven and itwts decided thatthese

two notions should be distinguished. The posidon taken was that a book was somethi.8

absulct and chat • copy was an insumce of that absu'acdon. The links between this

tl

I1

p 4

t2

t$ i!
•,,1 • ¢

1:*.1 rwcluest it
2: t! mcqu'lr* mL
3:t2 req_llt ml

B2

Figure 2 _ of tlze _ and
integrity levels to the _ _ Model

Hazard
Analysis

Risk _ i

Assessment I
!11!1

safe_..Requirements

sJ__
A --.- _ m

Designation of
Safety Related
Systems

Valndation
Planning

Risk and Safety
Integrity Levels:
Influencing Factors

• Legislation
• International

Standards
, National Standards
• Safety Regulatory

Guidelines

Design and
Implementation =

I

!

Safety jValidation system
ModmcaUon

_1

D_=omml._doning

Operation and
Maintenance

v I Verification

B

MCC
Formal Methods Transition Study

Call for Participation

April, 1990

Interestisgrowing worldwide in the applicationof
precisemathematical techniquestothe specification

and design of hardware and software systems. In
fact,European successes in this area, commonly

calledFormal Methods, have already led govern-

ments torequirethatthe techniquesbe used forsafe-

tycriticalsystems.

MCC's Software Technology Program proposesa one-

year in-depth study of Formal Methods techniques
and the toolsthat supportthem. Drawing upon sig-

nificantresearchexperienceat MCC, we willassess
the stateofthe artworldwide and determinethe im-

plicationsfora varietyofNorth American industries.

This proposal describesthe background, rationale,

and contentsofthe funded study,includingitstime-

lineand deliverables.Our goalisto provideexecu-

tiveswith the information they need to ascertain
theirown companies' requirements in the Formal
Methods area.For those whose interestcallsforfur-

thertechnologydevelopment, thisstudy willalsoes-

tablisha plan forappropriateresearchand develop-
ment work.

B_kmround. Rationale: Formal Methods, a body
oftechniquessupportedby powerfulreasoningtools,

offerrigorousand effectiveways to model, design,
and analyze systems. Several research groups, pri-
marily in Europe, have generated specification, im-
plementation, and verification techniques for a broad
class of systems, and have cast the techniques into in-
dustrially usable forms. Their affiliated companies
have already employed several of these techniques in
the development of real-world hardware and soft-
ware applications. Attention by governments and in-
dustry is increasing as well, due in large part to a
growing concern with the high risks of faulty comput-
er control in systems critical to life and property. In-
deed, certain combinations of Formal Methods are
now seen as necessary for ensuring that these sys-
tems meet existing regulations and standards, or

that they avoid legal liability repercussions. And
there are other, broader applications for these tech.
niques as well; in particular, they can help circum-
vent many of the expensive problems of general soft-

ware development practices,such as latediscoveryof

errorsand poorcommunication among end users,de-

signers,specifiers,and implementors.

MCC isina unique positiontobuildon the progress

in Formal Methods. Even today,a number oftools

and techniquesdevelopedinMCC researchlaborato-

riescan be brought tobear.For example, Software's

issue-baseddesign methodology can be integrated

with Advanced Computing Technolog_s declarative

language technologyand with externallydeveloped
Formal Methods-based toolsets.MCC researchers

have proposed severalnovelways inwhich toexploit
MCC-developed techniquestoadvance Formal Meth-

ods research.Moreover, researchersin the Software

Technology and Computer-aided Design programs

are investigatingCoDesign--design and analysis

techniquesspanning bothhardware and software.So

thatwe may capitalizeon worthwhile outsidedevel-
opments as they occur,MCC's InternationalLiaison

OfFicecloselymonitors the maturation of Formal

Methods techniquesinEurope and gauges industrial

and government interestinboth Europe and theU.S.
At the same time,MCC's experienceswith technolo-

gy transfer continue to give us bountiful insights into
the problems and operations of MCC's sponsoring or-
ganizations.

Content of Stud_ We propose to study Formal
Methods issues as they directly relate to North Amer-
ican companies. First, we will determine how Formal
Methods can help these companies meet demands for
higher quality, possibly regulated software-intensive
systems. Second, we will pinpoint how the companies
can exploit Formal Methods in current environments
for more productive software development processes.

The study will explore the issues and topics that per-
tain to a full-soale Formal Methods research effort at

MCC, including'.

Fundamental concepts of Formal Methods--what is a
formal method, and how does it work?

Training and instructional material--sample course
outlines, evaluation of course offerings.

Modes of using formal methods--specification, verifi-
cation, documentation, refinement; integration
with object-oriented and other widespread ap-
proaches; consistency of artifacts from require-
ments through code.

Survey of major applications--summaries of Formal
Methods projects to date, interpretations of col-
lected project data, evaluation of successes and
failures, derived guidelines for applications.

Tools survey---catalog of editors, syntactic/semantic
checkers, theorem provers, and other tools; MCC

experiments with North American and European
toolsets; assessment of state of toolsets.

Models of formal-based software development--injec-
tion of techniques into standard productivity,
risk, and QA models; scenarios of future develop-
ment processes.

Regulatory and legal trends in safety and security--
the high-integrity market sector; research fund-
ing patterns (U.S., Europe, and Japan); forecasts
of error and development costs, adoption pat-
terns, optimistic and pessimistic scenarios.

Transitional tips--what to teach, to whom, and fol-

low-through; projects to try; pitfalls, motivation,
and so on.

Experimental results--results of using MCC technol-
ogy and personnel, along with imported tools, in-
structors, consultants, and other studies, to ap-
ply Formal Methods to industrially relevant
problems. These experiments will illustrate
many of the above topics.

Research needs and strategy.

Tlmellne and Deliverables: The proposed study
will be conducted from September 1, i990, to Septem-
ber 30, 1991. At the end of this period, participants
will receive a comprehensive report covering the top-
ics outlined above, together with video overviews,
tool demonstrations, and thorough accounts ofexper-
imental protocols and results. Drafts of the report's
topics will be available at quarterly intervals; mid-
term and final reviews and information sessions will

occur at the MCC site; and at least one formal inter-

action will be designed according to the specific inter-
ests of each participant (within the domain expertise
limits of MCC personnel).

The study in its entirety will be proprietary to partic-
ipants for one year, after which MCC may distribute
it more widely. Selected sections reporting experi-
mental results and new insights of interest to the re-
search community may be published as technical re-

ports and papers during the course of the study, both
to further the field and to establish the MCC Formal

Methods initiative in the research community.

Costs: Costs for the study will be targeted to ten
participants at $60,000 each. Membership is open to
all MCC shareholders and associates; non-member
companies can opt to participate in MCC for the one-
year study period only, paying a special Project Asso-
ciate fee of $7,500 in addition to the study participa-
tion fee. Should there be more than ten participants,
additional personnel will be added to increase the

study's scope and depth.

A full-scale, multiple-year Formal Methods initiative

will be proposed in mid-1991. While the study's re-
port will motivate many of the initiative's activities,
it will not constitute a full definition of those activi-

ties. Study participants have no commitment beyond
September 1, 1991; however, if a participant does
elect membership in the initiative, it may deduct
$25,000 from the cost of membership over the first
two years.

Personnel: The MCC researcherswho willconduct

the study are broadlyexperiencedin the theoryand

applicationofFormal Methods techniquesand tools.

They are alsoexperts in tracking and forecasting
technologytrends.The study coordinator,Dr. Susan

Gerhart, has led a major U.S. formal verification

project and participatesin internationalFormal

Methods strategicactivities.Other projectmembers

are expertsina varietyoftools(alreadyassembled at

MCC), techniques,and theoriesand have applied

them to industriallyinterestingproblems. This

unique group has been cooperatingforayear and will

be complemented by consultingexpertisefrom out-

sideMCC as wellas from relatedMCC projects.

leer more i.,_-m,,o+_km,L.

Bumm Gerhm_ Ted Ralston
(Sit) _ (SlS) _7
$e_.aDm ra_toaOm_om

_eetz.onies and Computer Toahnology Corporation
9500 W. B4doonoe Cent4w Drive

Ausein. Texas 78750

Issues Related to Ada 9X
John McHugh

Computationa/ Logic, /nc.

Recent Ada 9X
Activities

John McHugh

Baldwin / McHugh Associates
Durham, North Carolina

8 November 1990

tAda 9X Activities I,-: ,,,,,,,,,,
I

IOVERVIEW[

• Ada 9X

• The 9X process

• Issues for Critical

Systems

Ada 9X Acttvitin [E::

Page I

r
. 1[1 LJ................. II III

ISO Standards such as Ada must be

reviewed for possible revision every 10
years. The review process can

• Leave the standard unchanged
• Withdraw the standard

• Initiate a revision process

Ada 83 is undergoing a revision. The new
language will be known as Ada 9X.

• The current expected value for X is 3.

b
Ada 9X Activities ..

III

4

The Ads 9X process is being managed by
the Air Force out of Eglin AFB, Fla. The
project manager Is Christine Anderson.

• Revision requests submitted 88-89

• Requirements workshops 89-90

• Distilled to revision Issues by IDA

• Requirements document - drafts fall 90

• Inputs still coming from Interest groups

• Mapping contractor (Intermetrice) will map
requirements into revised language

Ada 9X Activities ,,,, , ,, IIIIUI_

Page 2

The following represent my own, distinctly
minority view of the process.

• The ground rule that calls for upward
compatibility at all costs does more harm
than good as it guarantees a more complex
language.

• As Ada tries to be all things to all people,

dialects and subsets will become necessary.

• A rational approach is probably not possible.
Without it, Ada 9X will not be a substantial
Improvement over Ada 83 and Ada will

eventually collapse under its own weight,

Ada 9X Activitiea I.I _.A

IAda 9 X and Critical Systems I

As a part of the revision that Ada is

undergoing, the trusted systorns

community has raised a number of

Issues. They are sumrnarlzed in the

following slidos.

Ada 9X Activities-- II

Page 3

IDENTIFY AND JUSTiFYALL ELEMENTS OF THE
STANDARD THAT PERMIT UNPREDICTABLE
PROGRAM BEHAVIOR.

e.g., Program blockage

Integer (1.5) __ Integer(1.5)

INTENT IS TO ELIMINATE WHERE POSSIBLE
AND FORCE ANALYSIS AND COST BENEFIT

DECISION ELSEWHERE.

Ada 9X Activities -..

I II

IREQUIREMENT A .continued]

Ada 9X Activititl ,,, ,

1) Eliminate most erroneous cases

2) Eliminate "incorrect order dependency"--define
order-dependent samantics

3) Oefine undesirable Implementation dependency (UID)

4) UID has defined effect, not causa for "program error"

5) Implementations shall attempt to detect remaining
erroneous and UIO cases

6) Specific cases of undefined variables:

a. Majority - URG position on LHS usage

b. Minority - catch all usage

III II B! JJ II

Page 4

f !REQUIR,E,MENT BI
EXPOSE IMPLEMENTATION CHOICES

1) Language choices (LRM alternatives)

2) Implementation strategy (storage management,
scheduling, etc.)
- Static choices

- Dynamic choices
- What can user control?

- How can information be shared with others? With
tools?

Choices Include:

a) Parameter passage

b) Optimization

c) Heap vs stack vs ...storage management

Ada 9X Activities
.................................. _,_

II - - IIIIIII

r' IREQUIREMENT C I

ALLOW USERS TO CONTROL

IMPLEMENTATION TECHNIQUES

Certain Implernentation cholcas lead to
explosive growth in possible execution
behaviors.

Implementations must honor-or reject with

wamlngs-user diractives for Items such as
parameter passing mechanisms, orders of
evaluations, etc.

This is analogous to the representation
specification for data.

II

_tAda9X Activities ,,,,,,,

Page 5

r
..................... J......................................

IMPLEMENTATIONS SHALL ATTEMPT COMPILE
OR RUNTIME ANALYSIS FOR KNOWABLE
INSTANCES OF UNSOUND PROGRAMMING AND
ISSUE WARNINGS/EXCEPTIONS AS
APPROPRIATE.

- Aliasing

- Unsynchronized sharing

- Uninitialized variables

Etc.

Ada 9X Activities i,,,
11

[REQUIREMENT E I

PROGRAM BEHAVIOR TO BE DEFINED OR
PREDICTABLE IN THE FACE OF OPTIMIZATION

We call for further study on the following

- Canonical order of evaluation vs radical

optimizations

- Exceptions

- Side effects

- Possibility of pragrna control

II_Ada 9X Activities

Page 6

r
IREQUIREMENT FI

FORMAL STATIC SEMANTICS AS PART OF

ADA 9X STANDARD

The formal definition to be accompanied by tools that
facilitate use for answering questions about the legality
and meaning of programs.

While this does not necessarily change the language,
development of the definition and tools may contribute
to language changes.

N.B. Parameterlze formal definition for Implementation
decisions and architecture/environment.

tAda 9X Activities...mr............."

r IREQUIREMENT GI

DYNAMIC SEMANTICS AS ONGOING EFFORT WITH
AIM OF INCORPORATIONS IN NEXT STANDARD.

This area has enough uncertainty to keep it off the Ada
9X critical path. On the other hand, development of
portions of the dynamic semantics as part of the Ada 9X
effort should aid In evaluating and understanding
proposed language changes.

N.B. Parameterize formal definition for Implementation
decisions and architecture/environrnenL

Ada 9X Aetiviti_ ,I

Page 7

r]REQUIREMENT HI..............
Ill

_.SSERTIONS

MAJORITY
1)

2)

Need dynamic semantics for assertions
to be useful for proof
Suitable form not known
- Extend Ada expressions
- Ada vs spec functions
- Etc.
.'. Wait, but work on Issue

MINORITY
1) Anna exists
2) Anna is better than nothing

.'. Use Anna for now

tl

DON'T PRECLUDE LATER
CHOICE/DECISION

Ada 9X Activities ..

I

• Requirements A, B, and D are largely
reflected in the Requirements Document

• Requirements C and H have been largely
Ignored.

• Requirement E has resulted in special
consideration being given to the critical
systems community.

• Requirements F and G have been
completely rejected, but ...

Ada 9X Activitiesits
J

Page 8

t

r
ILanguage Precision Team I

PRDA Issued by Ada 9X project last
spring.

• Supports Ada 9X mapping team
by providing formal analysis of
selected language topics

• "Creeping formalism" approach to
demonstrating utility of formal
methodology

• May have some Influence on Ada 9X
language

A team led by ORA was Issued a contract
during the last days of FY 89.

Ada 9X Actlvltl_ll:i::- n---::::::-:.............

!

IResearch Issues and Efforts I

The language precision team will work with
Intermetflcs to model specific aspects of the Ada
language where the application of formal
techniques appears to have promise. These
Include optimization and tasking. While the project
is probably worth while, the approach may be less
than satisfactory for a number of reasons.

Ada 9X A#dvitiu "' IIIII

Page 9

f

., _lr Ada

..... II1... I I11 !!!!!!ll . illllli

In isolation, most Ada features are
innocuous. It is in combination that

they cause problems. The LPT
approach risks Ignoring the
interactions

• Overloading

• Separate Compilation

• Private types

• Signals and handlers

• Tasking

• Optimization and code generation

9X Activities ... ::_::_::_:_:_rf:::.......... ,.,.,,,.

Optimization and code generation are difficult to
separate. One man's optimization strategy is
another's code generation paradigm.

• Ada has no explicit low level parallelism. Most
modern architecturas do, even if it is on/y a
pipeline or a coprocessor.

• Array and vector processors have pdmitivss
that are of a higher level than the Ada
primitives that they implement.

• The ability of the programmer to explicitly
handle exceptions from predefined operations
makes visible Implementation details that are
better hidden.

_. It Ada 9X ActivitteJ iiii

Page 10

The interaction of exception handling, global data,
and separate compilation with low level parallelism
makes code generation difficult.

• Reordering exception raising operations can
create unexpected program states or even turn a

legal program into an erroneous one.

• If the exception is unhandled, this may not
matter.

• If the exception is handled in another
compilation, the dependencies are difficult to
track.

• Without global analysis, the wrong choices are
sure to be made sometimes.

9X Activitl_ : _l,r ::: -: _ :Ada

II II II!I I

Meanwhile back at Intermetrics

The first Ada 9X Mapping Issues document
produced by Intermetrics addresses no issues
that are of specific Interest to the critical systems

community. The Issues addressed Include:

• Type extensions and polymorphism

• Pointers to static objects

• Changes In visibility rules for operators

• etc.

Ada 9X Activitio ' '"" """" '
J

Page 11

\

What lies Ahead?

" _I_""_,iJ li jr

Ada

The process will inexorably wend its way
towards a revised Ada. While some of the
warts of the present language may be
removed in the process, it is certain that
others will spring up to take their place.

The process is under the control of those with
a certain vested Interest in the status quo.

What is lacking is a long term, radical view of
what ought to be. If Ada 9X, like Ada 83 falls
to serve the needs of portions of the
community, where can they go? What
alternatives do they have?

9X Activities ::-:.................. :: --::-- ::::::--- : ... :rim

Page 12

i'_ _ i_

r
f

